共 50 条
Design of a porous gel polymer electrolyte for sodium ion batteries
被引:48
|作者:
Kim, Jin Il
[1
]
Chung, Kyung Yoon
[2
]
Park, Jong Hyeok
[1
]
机构:
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonseiro, Seoul 120749, South Korea
[2] Korea Inst Sci & Technol, Ctr Energy Convergence Res, Hwarang Ro 14 Gil, Seoul 136791, South Korea
基金:
新加坡国家研究基金会;
关键词:
Sodium ion battery;
Gel polymer electrolyte;
Non-solvent induced phase separation;
Selective positioning engineering;
HIGH-PERFORMANCE ANODE;
ELECTROCHEMICAL PERFORMANCE;
COMPOSITE;
MEMBRANE;
D O I:
10.1016/j.memsci.2018.08.066
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
A separator is essential component for securing the safety and stability of secondary batteries. Sodium ion batteries (SIBs) have been considered as a highly powerful next generation energy storage device, but the conventionally used glass fibre (GF) separators for SIBs do not meet the necessary standards due to their randomly distributed pore structure, which causes severe safety problems and capacity decay. Although many studies have been performed to address these drawbacks, there are still difficulties of controlling the inner pore structure of GF. Herein, a strategy is introduced to control the inner porous nanostructure of GF via non-solvent induced phase separation (NIPS) engineering for the gel-polymer electrolyte in SIBs. We report how different types of porous polymer gel electrolyte inside the GF matrix affect SIB performance in terms of both pore nanostructure and vertical position of polymer layer. As a result of NIPS, the optimized gel-polymer electrolyte in GF facilitates increased ionic conductivity via modified ion transport and displays superior cell characteristics with excellent stability.
引用
收藏
页码:122 / 128
页数:7
相关论文