Is pathology necessary to predict mortality among men with prostate-cancer?

被引:2
作者
Margel, David [1 ,2 ]
Urbach, David R. [3 ,4 ,5 ,6 ,7 ]
Lipscombe, Lorraine L. [4 ,6 ,8 ,9 ]
Bell, Chaim M. [4 ,6 ,10 ,11 ]
Kulkarni, Girish [6 ,12 ]
Baniel, Jack [1 ]
Fleshner, Neil [12 ]
Austin, Peter C. [4 ,6 ]
机构
[1] Rabin Med Ctr, Div Urol, IL-4941492 Petah Tiqwa, Israel
[2] Rabin Med Ctr, Davidoff Canc Ctr, IL-4941492 Petah Tiqwa, Israel
[3] Univ Toronto, Dept Surg, Toronto, ON, Canada
[4] Univ Toronto, Dept Hlth Policy Management & Evaluat, Toronto, ON, Canada
[5] Toronto Gen Hosp, Res Inst, Div Clin Decis Making & Hlth Care, Toronto, ON, Canada
[6] ICES, Toronto, ON, Canada
[7] Canc Care Ontario, Toronto, ON, Canada
[8] Univ Toronto, Womens Coll Hosp, Dept Med, Toronto, ON, Canada
[9] Univ Toronto, Inst Res, Toronto, ON, Canada
[10] St Michaels Hosp, Dept Med, Toronto, ON M5B 1W8, Canada
[11] St Michaels Hosp, Li Ka Shing Knowledge Inst, Keenan Res Ctr, Toronto, ON M5B 1W8, Canada
[12] Univ Hlth Network, Princess Margaret Hosp, Dept Surg Oncol, Div Urol, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
Prostate cancer; Survival; Prediction models; Population-based study; ACUTE MYOCARDIAL-INFARCTION; DISEASE-SPECIFIC SURVIVAL; RADICAL PROSTATECTOMY; REGISTRY DATA; MODELS; RISK; RECLASSIFICATION; POPULATION; ONTARIO; NOMOGRAM;
D O I
10.1186/s12911-014-0114-6
中图分类号
R-058 [];
学科分类号
摘要
Background: Statistical models developed using administrative databases are powerful and inexpensive tools for predicting survival. Conversely, data abstraction from chart review is time-consuming and costly. Our aim was to determine the incremental value of pathological data obtained from chart abstraction in addition to information acquired from administrative databases in predicting all-cause and prostate cancer (PC)-specific mortality. Methods: We identified a cohort of men with diabetes and PC utilizing population-based data from Ontario. We used the c-statistic and net-reclassification improvement (NRI) to compare two Cox-proportional hazard models to predict all-cause and PC-specific mortality. The first model consisted of covariates from administrative databases: age, co-morbidity, year of cohort entry, socioeconomic status and rural residence. The second model included Gleason grade and cancer volume in addition to all aforementioned variables. Results: The cohort consisted of 4001 patients. The accuracy of the admin-data only model (c-statistic) to predict 5-year all-cause mortality was 0.7 (95% CI 0.69-0.71). For the extended model (including pathology information) it was 0.74 (95% CI 0.73-0.75). This corresponded to a change in category of predicted probability of survival among 14.8% in the NRI analysis. The accuracy of the admin-data model to predict 5-year PC specific mortality was 0.76 (95% CI 0.74-0.78). The accuracy of the extended model was 0.85 (95% CI 0.83-0.87). Corresponding to a 28% change in the NRI analysis. Conclusions: Pathology chart abstraction, improved the accuracy in predicting all-cause and PC-specific mortality. The benefit is smaller for all-cause mortality, and larger for PC-specific mortality.
引用
收藏
页数:8
相关论文
共 43 条
[11]   Predicting 15-Year Prostate Cancer Specific Mortality After Radical Prostatectomy [J].
Eggener, Scott E. ;
Scardino, Peter T. ;
Walsh, Patrick C. ;
Han, Misop ;
Partin, Alan W. ;
Trock, Bruce J. ;
Feng, Zhaoyong ;
Wood, David P. ;
Eastham, James A. ;
Yossepowitch, Ofer ;
Rabah, Danny M. ;
Kattan, Michael W. ;
Yu, Changhong ;
Klein, Eric A. ;
Stephenson, Andrew J. .
JOURNAL OF UROLOGY, 2011, 185 (03) :869-875
[12]   Validation of a postresection pancreatic adenocarcinorna nomogram for disease-specific survival [J].
Ferrone, CR ;
Kattan, MW ;
Tomlinson, JS ;
Thayer, SP ;
Brennan, MF ;
Warshaw, AL .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (30) :7529-7535
[13]  
GLOBOCAN, 2008, PROST CANC INC MORT
[14]   Using cancer registry data for survival studies: the example of the Ontario Cancer Registry [J].
Hall, S ;
Schulze, K ;
Groome, P ;
Mackillop, W ;
Holowaty, E .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (01) :67-76
[15]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[16]  
2-4
[17]   Diabetes in Ontario - Determination of prevalence and incidence using a validated administrative data algorithm [J].
Hux, JE ;
Flintoft, V ;
Ivis, F ;
Bica, A .
DIABETES CARE, 2002, 25 (03) :512-516
[18]  
Juurlink D., 2006, Canadian Institute for Health Information Discharge Abstract Database: A Validation Study, P8
[19]   Postoperative nomogram for disease-specific survival after an R0 resection for gastric carcinoma [J].
Kattan, MW ;
Karpeh, MS ;
Mazumdar, M ;
Brennan, MF .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (19) :3647-3650
[20]   Interpretation of the prostate-specific antigen history in assessing life-threatening prostate cancer EDITORIAL COMMENT RESPONSE [J].
Kettermann, Anna ;
Ferrucci, Luigi ;
Trock, Bruce J. ;
Metter, E. Jeffrey ;
Loeb, Stacy ;
Carter, H. Ballentine .
BJU INTERNATIONAL, 2010, 106 (09) :1291-1292