Impulse-induced localized control of chaos in starlike networks

被引:17
作者
Chacon, Ricardo [1 ,2 ]
Palmero, Faustino [3 ]
Cuevas-Maraver, Jesus [4 ,5 ]
机构
[1] Univ Extremadura, EII, Dept Fis Aplicada, Apartado Postal 382, E-06006 Badajoz, Spain
[2] Univ Extremadura, Inst Computac Cient Avanzada ICCAEx, E-06006 Badajoz, Spain
[3] Univ Seville, Escuela Tecn Super Ingn Informat, Dept Fis Aplicada 1, Grp Fis No Lineal, Ave Reina Mercedes S-N, E-41012 Seville, Spain
[4] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Grp Fis No Lineal, Virgen de Africa 7, Seville 41011, Spain
[5] Univ Seville, Inst Matemat, Edificio Celestino Mutis,Ave Reina Mercedes S-N, E-41012 Seville, Spain
关键词
CONTROLLABILITY; PATTERNS;
D O I
10.1103/PhysRevE.93.062210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], ELLIPTIC FUNCTIONS
[3]  
[Anonymous], NONLINEAR DYNAMICS C
[4]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[5]   Remote synchronization in star networks [J].
Bergner, A. ;
Frasca, M. ;
Sciuto, G. ;
Buscarino, A. ;
Ngamga, E. J. ;
Fortuna, L. ;
Kurths, J. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Well-behaved dynamics in a dissipative nonideal periodically kicked rotator -: art. no. 066217 [J].
Chacón, R ;
García-Hoz, AM .
PHYSICAL REVIEW E, 2003, 68 (06)
[7]  
Chacon R, 2005, WORLD SCI SER NONLIN, V55, P1, DOI 10.1142/9789812703514
[8]   Chaotic behavior in a dissipative non-ideal periodically kicked rotator [J].
Chacón, R ;
García-Hoz, AM .
PHYSICS LETTERS A, 2001, 281 (04) :231-239
[9]   Controlling chaos with localized heterogeneous forces in oscillator chains [J].
Chacon, Ricardo .
PHYSICAL REVIEW E, 2006, 74 (04)
[10]  
Chen G., 1998, CHAOS ORDER