Electrosynthesis of Hydrogen Peroxide by Phase-Transfer Catalysis

被引:123
作者
Murray, Alexander T. [1 ,3 ]
Voskian, Sahag [2 ]
Schreier, Marcel [1 ]
Hatton, T. Alan [2 ]
Surendranath, Yogesh [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England
基金
瑞士国家科学基金会;
关键词
OXYGEN REDUCTION; 2-ETHYL-9,10-ANTHRAQUINONE EAQ; ELECTROCHEMICAL REDUCTION; MEDIATED FORMATION; H2O2; PRODUCTION; 2-PHASE MEDIUM; ANTHRAQUINONE; WATER; EVOLUTION; ELECTRODE;
D O I
10.1016/j.joule.2019.09.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The portable electrochemical generation of hydrogen peroxide (H2O2) from air and water would enable greater utilization of this versatile green oxidant in applications ranging from environmental remediation to portable sanitation. Currently, electrochemical H2O2 synthesis is hampered by the lack of low-cost, non-toxic catalysts that selectively reduce O-2 to H2O2 and the lack of low-energy methods for separating the produced H2O2 from the electrolyte media. Herein, we show that a disulfonated anthraquinone can simultaneously catalyze the selective conversion of O-2 to H2O2 and shuttle between immiscible aqueous and organic phases via ion exchange. We exploit both of these properties in a flow system to assemble an all-Earth-abundant prototype device for the continuous generation and separation of H2O2 into an electrolyte-free water stream. The combination of molecular redox mediation and phase-transfer catalysis demonstrated here has broad implications for the electrochemical synthesis and isolation of value-added chemicals and fuels.
引用
收藏
页码:2942 / 2954
页数:13
相关论文
共 53 条
[31]   Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review [J].
Oller, I. ;
Malato, S. ;
Sanchez-Perez, J. A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2011, 409 (20) :4141-4166
[32]   ONE-STEP SYNTHESIS OF HYDROGEN-PEROXIDE THROUGH FUEL-CELL REACTION [J].
OTSUKA, K ;
YAMANAKA, I .
ELECTROCHIMICA ACTA, 1990, 35 (02) :319-322
[33]   Gold-Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity [J].
Pizzutilo, Enrico ;
Freakley, Simon J. ;
Cherevko, Serhiy ;
Venkatesan, Sriram ;
Hutchings, Graham J. ;
Liebscher, Christian H. ;
Dehm, Gerhard ;
Mayrhofer, Karl J. J. .
ACS CATALYSIS, 2017, 7 (09) :5699-5705
[34]   Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst [J].
Preger, Yuliya ;
Gerken, James B. ;
Biswas, Sourav ;
Anson, Colin W. ;
Johnson, Mathew R. ;
Root, Thatcher W. ;
Stahl, Shannon S. .
JOULE, 2018, 2 (12) :2722-2731
[35]   Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting [J].
Rausch, Benjamin ;
Symes, Mark D. ;
Chisholm, Greig ;
Cronin, Leroy .
SCIENCE, 2014, 345 (6202) :1326-1330
[36]   A Bio-Inspired, Small Molecule Electron-Coupled-Proton Buffer for Decoupling the Half-Reactions of Electrolytic Water Splitting [J].
Rausch, Benjamin ;
Symes, Mark D. ;
Cronin, Leroy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (37) :13656-13659
[37]  
Riedl H.-J., 1939, Patent No. [2,158,525, 2158525, US2158525]
[38]   Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO [J].
Schreier, Marcel ;
Heroguel, Florent ;
Steier, Ludmilla ;
Ahmad, Shahzada ;
Luterbacher, Jeremy S. ;
Mayer, Matthew T. ;
Luo, Jingshan ;
Gratzel, Michael .
NATURE ENERGY, 2017, 2 (07)
[39]  
Siahrostami S, 2013, NAT MATER, V12, P1137, DOI [10.1038/NMAT3795, 10.1038/nmat3795]
[40]   Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer [J].
Symes, Mark D. ;
Cronin, Leroy .
NATURE CHEMISTRY, 2013, 5 (05) :403-409