Electrosynthesis of Hydrogen Peroxide by Phase-Transfer Catalysis

被引:123
作者
Murray, Alexander T. [1 ,3 ]
Voskian, Sahag [2 ]
Schreier, Marcel [1 ]
Hatton, T. Alan [2 ]
Surendranath, Yogesh [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England
基金
瑞士国家科学基金会;
关键词
OXYGEN REDUCTION; 2-ETHYL-9,10-ANTHRAQUINONE EAQ; ELECTROCHEMICAL REDUCTION; MEDIATED FORMATION; H2O2; PRODUCTION; 2-PHASE MEDIUM; ANTHRAQUINONE; WATER; EVOLUTION; ELECTRODE;
D O I
10.1016/j.joule.2019.09.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The portable electrochemical generation of hydrogen peroxide (H2O2) from air and water would enable greater utilization of this versatile green oxidant in applications ranging from environmental remediation to portable sanitation. Currently, electrochemical H2O2 synthesis is hampered by the lack of low-cost, non-toxic catalysts that selectively reduce O-2 to H2O2 and the lack of low-energy methods for separating the produced H2O2 from the electrolyte media. Herein, we show that a disulfonated anthraquinone can simultaneously catalyze the selective conversion of O-2 to H2O2 and shuttle between immiscible aqueous and organic phases via ion exchange. We exploit both of these properties in a flow system to assemble an all-Earth-abundant prototype device for the continuous generation and separation of H2O2 into an electrolyte-free water stream. The combination of molecular redox mediation and phase-transfer catalysis demonstrated here has broad implications for the electrochemical synthesis and isolation of value-added chemicals and fuels.
引用
收藏
页码:2942 / 2954
页数:13
相关论文
共 53 条
[1]   Updating and further expanding GSK's solvent sustainability guide [J].
Alder, Catherine M. ;
Hayler, John D. ;
Henderson, Richard K. ;
Redman, Aniko M. ;
Shukla, Lena ;
Shuster, Leanna E. ;
Sneddon, Helen F. .
GREEN CHEMISTRY, 2016, 18 (13) :3879-3890
[2]   MINIATURE MIXER SETTLER FOR CONTINUOUS COUNTERCURRENT SOLVENT EXTRACTION [J].
ALTER, HW ;
CODDING, JW ;
JENNINGS, AS .
ANALYTICAL CHEMISTRY, 1954, 26 (08) :1357-1361
[3]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[4]   Cooperative Electrocatalytic O2 Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator [J].
Anson, Colin W. ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (51) :18472-18475
[5]  
Arpe H.J., 2003, IND ORGANIC CHEM, P329
[6]   Hygiene, Sanitation, and Water: Forgotten Foundations of Health [J].
Bartram, Jamie ;
Cairncross, Sandy .
PLOS MEDICINE, 2010, 7 (11)
[7]   Mechanism of electrochemical oxidation of ammonia [J].
Bunce, Nigel J. ;
Bejan, Dorin .
ELECTROCHIMICA ACTA, 2011, 56 (24) :8085-8093
[8]   Organic Pollutants in Shale Gas Flowback and Produced Waters: Identification, Potential Ecological Impact, and Implications for Treatment Strategies [J].
Butkovskyi, Andrii ;
Bruning, Harry ;
Kools, Stefan A. E. ;
Rijnaarts, Huub H. M. ;
Van Wezel, Annemarie P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (09) :4740-4754
[9]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[10]   Concentration-Dependent Dimerization of Anthraquinone Disulfonic Acid and Its Impact on Charge Storage [J].
Carney, Thomas J. ;
Collins, Steven J. ;
Moore, Jeffrey S. ;
Brushett, Fikile R. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4801-4810