OPTIMAL BAYESIAN FEATURE SELECTION WITH MISSING DATA

被引:0
作者
Pour, Ali Foroughi [1 ]
Dalton, Lori A. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
来源
2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2016年
关键词
Feature selection; Biomarker discovery; Missing data;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a framework for optimal Bayesian feature selection and missing value estimation. Based on this framework, we derive optimal algorithms under an independent Gaussian model, and provide fast sub-optimal methods with superb performance for a dependent Gaussian model.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 12 条
[1]   Bolstered error estimation [J].
Braga-Neto, U ;
Dougherty, E .
PATTERN RECOGNITION, 2004, 37 (06) :1267-1281
[2]   Improving cluster-based missing value estimation of DNA microarray data [J].
Bras, Ligia P. ;
Menezes, Jose C. .
BIOMOLECULAR ENGINEERING, 2007, 24 (02) :273-282
[3]  
Dalton LA, 2013, IEEE GLOB CONF SIG, P65, DOI 10.1109/GlobalSIP.2013.6736814
[4]   Impact of missing data imputation methods on gene expression clustering and classification [J].
de Souto, Marcilio C. P. ;
Jaskowiak, Pablo A. ;
Costa, Ivan G. .
BMC BIOINFORMATICS, 2015, 16
[5]  
Foroughi pour A., 2015, P 6 ACM C BIOINF COM, P651
[6]   Pattern classification with missing data: a review [J].
Garcia-Laencina, Pedro J. ;
Sancho-Gomez, Jose-Luis ;
Figueiras-Vidal, Anibal R. .
NEURAL COMPUTING & APPLICATIONS, 2010, 19 (02) :263-282
[7]  
Little R. J., 2019, Statistical analysis with missing data, V793
[8]  
Murphy K. P., 2007, CONJUGATE BAYESIAN A
[9]  
Pour AF, 2014, 2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), P1402, DOI 10.1109/GlobalSIP.2014.7032358
[10]  
Song L, 2012, J MACH LEARN RES, V13, P1393