DeepIris: An ensemble approach to defending Iris recognition classifiers against Adversarial Attacks

被引:4
|
作者
Tamizhiniyan, S. R. [1 ]
Ojha, Aman [1 ]
Meenakshi, K. [2 ]
Maragatham, G. [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Kattankulathur, India
[2] SRM Inst Sci & Technol, Dept Informat Technol, Kattankulathur, India
来源
2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI) | 2021年
关键词
biometrics; Deep convolutional Neural Networks; adversarial attack; Defense method; encoder; security; iris classification;
D O I
10.1109/ICCCI50826.2021.9402404
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Despite being known for their robust performance in the biometrics domain, Deep Convolutional Neural Networks always face a high risk of being fooled by precisely engineered input samples. These samples are called adversarial examples and such attacks are called adversarial attacks. These attacks pose great threat to any biometric security system. In this paper, to guard against adversarial iris images, we propose defensive schemes. The first strategy we propose relies on our adversarial denoising encoder architecture. The second strategy relies on wavelet transformation to divide them into wavelet sub-bands following an U-net architecture wavelet domain denoising on processing each sub-band to remove the adversarial noise. We measure the efficiency against numerous attack scenarios of the suggested adversarial defence mechanism and equate the findings with state-of-the-art defence strategies.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] A Self Supervised Defending Mechanism Against Adversarial Iris Attacks based on Wavelet Transform
    Meenakshi, K.
    Maragatham, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 564 - 569
  • [2] Defending Distributed Systems Against Adversarial Attacks
    Su L.
    Performance Evaluation Review, 2020, 47 (03): : 24 - 27
  • [3] Defending Against Adversarial Attacks in Speaker Verification Systems
    Chang, Li-Chi
    Chen, Zesheng
    Chen, Chao
    Wang, Guoping
    Bi, Zhuming
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [4] Classification of Adversarial Attacks Using Ensemble Clustering Approach
    Tatongjai, Pongsakorn
    Boongoen, Tossapon
    Iam-On, Natthakan
    Naik, Nitin
    Yang, Longzhi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 2479 - 2498
  • [5] DiffDefense: Defending Against Adversarial Attacks via Diffusion Models
    Silva, Hondamunige Prasanna
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT II, 2023, 14234 : 430 - 442
  • [6] Defending non-Bayesian learning against adversarial attacks
    Lili Su
    Nitin H. Vaidya
    Distributed Computing, 2019, 32 : 277 - 289
  • [7] Defending non-Bayesian learning against adversarial attacks
    Su, Lili
    Vaidya, Nitin H.
    DISTRIBUTED COMPUTING, 2019, 32 (04) : 277 - 289
  • [8] Defending edge computing based metaverse AI against adversarial attacks
    Yi, Zhangao
    Qian, Yongfeng
    Chen, Min
    Alqahtani, Salman A.
    Hossain, M. Shamim
    AD HOC NETWORKS, 2023, 150
  • [9] Defending against Adversarial Attacks in Federated Learning on Metric Learning Model
    Gu, Zhipin
    Shi, Jiangyong
    Yang, Yuexiang
    He, Liangzhong
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 197 - 206
  • [10] Defending Against Local Adversarial Attacks through Empirical Gradient Optimization
    Sun, Boyang
    Ma, Xiaoxuan
    Wang, Hengyou
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2023, 30 (06): : 1888 - 1898