Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition

被引:35
|
作者
Zhang, Xinxin [1 ]
Niu, Peifeng [1 ]
Ma, Yunpeng [1 ]
Wei, Yanqiao [1 ]
Li, Guoqiang [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066001, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order neural networks; Mittag-Leffler stability; Impulses; One-side Lipschitz condition; SYNCHRONIZATION; CHAOS; BIFURCATION; DELAYS;
D O I
10.1016/j.neunet.2017.06.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [41] Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Chen, Jiyang
    Huang, Junjian
    NEURAL NETWORKS, 2018, 105 : 88 - 103
  • [42] Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments
    Wu, Ailong
    Liu, Ling
    Huang, Tingwen
    Zeng, Zhigang
    NEURAL NETWORKS, 2017, 85 : 118 - 127
  • [43] Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems
    Ke Yunquan
    Miao Chunfang
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1237 - 1246
  • [44] Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks
    Fengxian Wang
    Fang Wang
    Xinge Liu
    Advances in Difference Equations, 2021
  • [45] Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks
    Wang, Fengxian
    Wang, Fang
    Liu, Xinge
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [46] Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument
    Liguang Wan
    Ailong Wu
    Advances in Difference Equations, 2017
  • [47] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [48] Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument
    Wan, Liguang
    Wu, Ailong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [49] Global Mittag-Leffler Synchronization for Neural Networks Modeled by Impulsive Caputo Fractional Differential Equations with Distributed Delays
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    SYMMETRY-BASEL, 2018, 10 (10):
  • [50] Global Mittag-Leffler Stabilization of Fractional-Order BAM Neural Networks with Linear State Feedback Controllers
    Yan, Hongyun
    Qiao, Yuanhua
    Duan, Lijuan
    Zhang, Ling
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)