Hamilton-Jacobi hydrodynamics of pulsating relativistic stars

被引:4
作者
Westernacher-Schneider, John Ryan [1 ]
Markakis, Charalampos [2 ,3 ,4 ]
Tsao, Bing Jyun [5 ]
机构
[1] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA
[2] Univ Cambridge, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[3] Queen Mary Univ London, Math Sci, Mile End Rd, London E1 4NS, England
[4] Univ Illinois, NCSA, 1205 W Clark StW, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
基金
欧盟地平线“2020”; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
numerical relativity; hydrodynamics; Hamilton-Jacobi formulation; COMPRESSIBLE EULER EQUATIONS; WELL-POSEDNESS; FREE-SURFACE; MOTION; LIQUID; MODES;
D O I
10.1088/1361-6382/ab93e9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamics of self-gravitating fluid bodies is described by the Euler-Einstein system of partial differential equations. The break-down of well-posedness on the fluid-vacuum interface remains a challenging open problem, which is manifested in simulations of oscillating or inspiraling binary neutron-stars. We formulate and implement a well-posed canonical hydrodynamic scheme, suitable for neutron-star simulations in numerical general relativity. The scheme uses a variational principle by Carter-Lichnerowicz stating that barotropic fluid motions are conformally geodesic and Helmholtz's third theorem stating that initially irrotational flows remain irrotational. We apply this scheme in 3 + 1 numerical general relativity to evolve the canonical momentum of a fluid element via the Hamilton-Jacobi equation. We explore a regularization scheme for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilibrium and allows the pressure to vanish, while preserving strong hyperbolicity on the vacuum boundary. The new regularization scheme resolves a larger number of radial oscillation modes compared to standard, non-equilibrium atmosphere treatments.
引用
收藏
页数:23
相关论文
共 58 条
  • [1] On the Progenitor of Binary Neutron Star Merger GW170817
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2017, 850 (02)
  • [2] [Anonymous], 1967, Relativistic Magnetohydrodynamics
  • [4] Conservation of circulation in magnetohydrodynamics
    Bekenstein, JD
    Oron, A
    [J]. PHYSICAL REVIEW E, 2000, 62 (04): : 5594 - 5602
  • [5] Extended Kelvin theorem in relativistic magnetohydrodynamics
    Bekenstein, JD
    Oron, A
    [J]. FOUNDATIONS OF PHYSICS, 2001, 31 (06) : 895 - 907
  • [6] Bressan A, 2003, VISCOSITY SOLUTIONS
  • [7] Carter B., 1979, Active galactic nuclei, P273
  • [8] Chen G Q G, 2018, MATH SHOCK REFLECTIO
  • [9] Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
  • [10] 2-H