Self-similar solutions and translating solutions

被引:0
作者
Lee, Yng-Ing [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
来源
COMPLEX AND DIFFERENTIAL GEOMETRY | 2011年 / 8卷
关键词
Mean curvature flow; self-similar solution; translating solution; Lagrangian; MEAN-CURVATURE FLOW;
D O I
10.1007/978-3-642-20300-8_12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, I provide some detailed computation of constructing translating solutions from self-similar solutions for Lagrangian mean curvature flow discussed in [6] and explore the related geometric meanings. This method works for all mean curvature flows and has great potential to find other new translating solutions.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 12 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
Anciaux H, 2006, GEOMETRIAE DEDICATA, V120, P37, DOI 10.1007/s10711-006-9082-z
[3]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[4]  
ILMANEN T., 1995, Preprints
[5]   Constructing special Lagrangian m-folds in Cm by evolving quadrics [J].
Joyce, D .
MATHEMATISCHE ANNALEN, 2001, 320 (04) :757-797
[6]  
Joyce D, 2010, J DIFFER GEOM, V84, P127
[7]   THE ANGLE CRITERION [J].
LAWLOR, G .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :437-446
[8]  
LEE YC, UNPUB
[9]  
Lee YI, 2010, T AM MATH SOC, V362, P1491
[10]  
Lee YI, 2009, J DIFFER GEOM, V83, P27