Nonclassicality without entanglement enables bit commitment

被引:17
作者
Barnum, Howard [1 ]
Dahsten, Oscar C. O. [2 ]
Leifer, Matthew [3 ]
Toner, Ben [4 ]
机构
[1] Los Alamos Natl Lab, CCS Informat Sci & Quantum Inst 3, Los Alamos, NM USA
[2] Swiss Fed Inst Technol, Inst Therorit Phys, Zurich, Switzerland
[3] Univ Waterloo, Inst Quantum Comp, Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[4] Centrum Voor Wiskunde Informat, Amsterdam, Netherlands
来源
2008 IEEE INFORMATION THEORY WORKSHOP | 2008年
基金
加拿大自然科学与工程研究理事会;
关键词
INFORMATION;
D O I
10.1109/ITW.2008.4578692
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the existence of secure bit commitment protocols in the convex framework for probabilistic theories. The theory makes only minimal assumptions, and can be used to formalize quantum theory, classical probability theory, and a host of other possibilities. We prove that in all such theories that are locally non-classical but do not have entanglement, there exists a bit commitment protocol that is exponentially secure in the number of systems used.
引用
收藏
页码:386 / +
页数:2
相关论文
共 23 条
[1]   Generalized no-broadcasting theorem [J].
Barnum, Howard ;
Barrett, Jonathan ;
Leifer, Matthew ;
Wilce, Alexander .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[2]   Nonlocal correlations as an information-theoretic resource [J].
Barrett, J ;
Linden, N ;
Massar, S ;
Pironio, S ;
Popescu, S ;
Roberts, D .
PHYSICAL REVIEW A, 2005, 71 (02)
[3]  
BARRETT J, 2005, PHYS REV A IN PRESS
[4]  
BARRUM H, 2007, QUANTPH0611295
[5]  
Bennett C.H., 1985, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, December, 1984, P175
[6]   Is information the key? [J].
Brassard, G .
NATURE PHYSICS, 2005, 1 (01) :2-4
[7]  
BRASSARD G, 1993, P 34 IEEE S FDN COMP, P42
[8]  
BUHRMAN H, P ROY SOC A, V462, P1919
[9]  
BURHMAN H, 2005, QUANTPH0504133
[10]   Characterizing quantum theory in terms of information-theoretic constraints [J].
Clifton, R ;
Bub, J ;
Halvorson, H .
FOUNDATIONS OF PHYSICS, 2003, 33 (11) :1561-1591