Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys

被引:153
作者
Fallah, V. [1 ,2 ]
Amoorezaei, M. [2 ]
Provatas, N. [2 ]
Corbin, S. F. [1 ]
Khajepour, A. [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Phase-field models; Finite element analysis; Directional solidification; Solidification microstructure; Laser deposition; DENDRITIC GROWTH; BINARY ALLOY; RAPID SOLIDIFICATION; MICROSTRUCTURE; MODEL; MULTICOMPONENT; STABILITY;
D O I
10.1016/j.actamat.2011.12.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A phase-field model of alloy solidification is coupled to a new heat transfer finite element model of the laser powder deposition process. The robustness and accuracy of the coupled model is validated by studying spacing evolution under the directional solidification conditions in laser powder deposition of Ti-Nb alloys. Experimental Ti-Nb samples reveal the microstructure on a longitudinal section with significant change in the size of the dendrites across the sample. Quantitative phase-field simulations of directional solidification under local steady-state conditions extracted from the results of the finite element thermal model confirmed this behavior. Specifically, the phase-field simulations agree with the results of the analytical model of Hunt in predicting a minimum spacing value, which is due to the mutual effects of the increasing temperature gradient and decreasing solidification velocity towards the bottom of the microstructure. This work demonstrates the potential of coupling the phase-field method to complex heat transfer conditions necessary to simulate topologically complex microstructure morphologies present in laser powder deposition and other industrially relevant casting conditions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1633 / 1646
页数:14
相关论文
共 41 条
  • [1] Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions
    Amoorezaei, Morteza
    Gurevich, Sebastian
    Provatas, Nikolas
    [J]. ACTA MATERIALIA, 2010, 58 (18) : 6115 - 6124
  • [2] Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model
    Athreya, Badrinarayan P.
    Goldenfeld, Nigel
    Dantzig, Jonathan A.
    Greenwood, Michael
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2007, 76 (05):
  • [3] MODEL FOR SOLUTE REDISTRIBUTION DURING RAPID SOLIDIFICATION
    AZIZ, MJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) : 1158 - 1168
  • [4] Phase-field simulation of solidification
    Boettinger, WJ
    Warren, JA
    Beckermann, C
    Karma, A
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 163 - 194
  • [5] Dilthey U, 1997, MATH MODELLING WELD
  • [6] Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
  • [7] Fallah V, 2011, THESIS U WATERLOO WA
  • [8] Temporal development of melt-pool morphology and clad geometry in laser powder deposition
    Fallah, Vahid
    Alimardani, Masoud
    Corbin, Stephen F.
    Khajepour, Arnir
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) : 2124 - 2134
  • [9] Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders
    Fallah, Vahid
    Corbin, Stephen F.
    Khajepour, Amir
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (14) : 2081 - 2087
  • [10] Phase-field simulation of weld solidification microstructure in an Al-Cu alloy
    Farzadi, A.
    Do-Quang, M.
    Serajzadeh, S.
    Kokabi, A. H.
    Amberg, G.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)