Sentiment Analysis on Automobile Brands Using Twitter Data

被引:7
|
作者
Asghar, Zain [1 ]
Ali, Tahir [2 ]
Ahmad, Imran [3 ]
Tharanidharan, Sridevi [4 ]
Nazar, Shamim Kamal Abdul [5 ]
Kamal, Shahid [6 ]
机构
[1] Univ Cent Punjab, Lahore, Pakistan
[2] Gulf Univ Sci & Technol, Kuwait, Kuwait
[3] Riphah Int Univ, Lahore, Pakistan
[4] King Khalid Univ, Abha, Saudi Arabia
[5] King Khalid Univ, ICIT, Abha, Saudi Arabia
[6] Gomal Univ DIKhan, Dera Ismail Khan, Pakistan
来源
INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018 | 2019年 / 932卷
关键词
Social media; Twitter; Text mining; Sentiment analysis; Automobiles;
D O I
10.1007/978-981-13-6052-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
User generated contents in a very big number is freely available on different social media sites now a day. Companies to increase their competitive advantages keep an eye on their competing companies and closely analyze the data that are generated by their customers on their social media sites. Analysis of sentiments is the quickest growing field that utilizes text mining, computational linguistics and natural language processing, linguistic mining of text and calculation to extricate valuable data to assist in decision making. The automobiles business is extremely competing and needs that supplier, automobile corporations, carefully analyze and address the views of consumers with a specific end goal to accomplish an upper hand in the market. It is a great way to analyze the views of consumers through the data of social media sites; what's more, it is also helpful for automobiles companies to improve their goals and objectives of marketing. In this research, presents an analysis of sentiment on a case study of automobiles industry. Sentiment analysis and text mining are utilized to analyze and break down unstructured Twitter's tweets to take out automobile classes' polarity for example, Honda, Toyota, BMW, Audi, and Mercedes. According to the classification of the polarity, you notice that Audi has 87% of the positive tweets compared to 74% for BMW, 84% for Honda, 70% for Toyota and 81% for Mercedes. What's more, the results demonstrate that Audi has negative polarity 18% against 10% for BMW, 20% for Mercedes, 15% for Honda and 25% for Toyota.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [31] Dynamic profiles using sentiment analysis and twitter data for voting advice applications
    Teran, Luis
    Mancera, Jose
    GOVERNMENT INFORMATION QUARTERLY, 2019, 36 (03) : 520 - 535
  • [32] Sentiment Analysis on Twitter Data-set using Naive Bayes Algorithm
    Parveen, Huma
    Pandey, Shikha
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 416 - 419
  • [33] Cyberbullying Detection in Twitter Using Sentiment Analysis
    Theng, Chong Poh
    Othman, Nur Fadzilah
    Abdullah, Raihana Syahirah
    Anawar, Syarulnaziah
    Ayop, Zakiah
    Ramli, Sofia Najwa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (11): : 1 - 10
  • [34] SENTIMENT ANALYSIS ON TWITTER USING STREAMING API
    Trupthi, M.
    Pabboju, Suresh
    Narasimha, G.
    2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, : 915 - 919
  • [35] Sentiment analysis of multimodal twitter data
    Kumar, Akshi
    Garg, Geetanjali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24103 - 24119
  • [36] Clustering and Sentiment Analysis on Twitter Data
    Ahuja, Shreya
    Dubey, Gaurav
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 420 - 424
  • [37] Sentiment Analysis and Summarization of Twitter Data
    Bahrainian, Seyed-Ali
    Dengel, Andreas
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 227 - 234
  • [38] Sentiment analysis of multimodal twitter data
    Akshi Kumar
    Geetanjali Garg
    Multimedia Tools and Applications, 2019, 78 : 24103 - 24119
  • [39] Unsupervised Sentiment Classification of Twitter Data using Emoticons
    Hiremath, Savitha
    Manjula, S. H.
    Venugopal, K. R.
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 444 - 448
  • [40] Saudi Stock Market Sentiment Analysis using Twitter Data
    Alazba, Amal
    Alturayeif, Nora
    Alturaief, Nouf
    Alhathloul, Zainab
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1, 2020, : 36 - 47