Dual resonance excitation system for the contact mode of atomic force microscopy

被引:12
|
作者
Kopycinska-Mueller, M. [1 ,2 ]
Striegler, A. [1 ,2 ]
Schlegel, R. [2 ]
Kuzeyeva, N. [1 ]
Koehler, B. [2 ]
Wolter, K. -J. [1 ]
机构
[1] Tech Univ Dresden, Fac Elect Engn & Informat Technol, D-01069 Dresden, Germany
[2] Fraunhofer Inst Nondestruct Testing, Branch Dresden, D-01109 Dresden, Germany
关键词
ACOUSTIC MICROSCOPY; STIFFNESS;
D O I
10.1063/1.3702799
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose an improved system that enables simultaneous excitation and measurements of at least two resonance frequency spectra of a vibrating atomic force microscopy (AFM) cantilever. With the dual resonance excitation system it is not only possible to excite the cantilever vibrations in different frequency ranges but also to control the excitation amplitude for the individual modes. This system can be used to excite the resonance frequencies of a cantilever that is either free of the tip-sample interactions or engaged in contact with the sample surface. The atomic force acoustic microscopy and principally similar methods utilize resonance frequencies of the AFM cantilever vibrating while in contact with the sample surface to determine its local elastic modulus. As such calculation demands values of at least two resonance frequencies, two or three subsequent measurements of the contact resonance spectra are necessary. Our approach shortens the measurement time by a factor of two and limits the influence of the AFM tip wear on the values of the tip-sample contact stiffness. In addition, it allows for in situ observation of processes transpiring within the AFM tip or the sample during non-elastic interaction, such as tip fracture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702799]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Contact resonance atomic force microscopy imaging in air and water using photothermal excitation
    Kocun, Marta
    Labuda, Aleksander
    Gannepalli, Anil
    Proksch, Roger
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (08)
  • [2] Image contrast reversals in contact resonance atomic force microscopy
    Ma, Chengfu
    Chen, Yuhang
    Wang, Tian
    AIP ADVANCES, 2015, 5 (02):
  • [3] Nanoscale mechanics by tomographic contact resonance atomic force microscopy
    Stan, Gheorghe
    Solares, Santiago D.
    Pittenger, Bede
    Erina, Natalia
    Su, Chanmin
    NANOSCALE, 2014, 6 (02) : 962 - 969
  • [4] Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy
    Hurley, D. C.
    Kopycinska-Muller, M.
    Langlois, E. D.
    Kos, A. B.
    Barbosa, N., III
    APPLIED PHYSICS LETTERS, 2006, 89 (02)
  • [5] Scanning speed phenomenon in contact-resonance atomic force microscopy
    Glover, Christopher C.
    Killgore, Jason P.
    Tung, Ryan C.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 945 - 952
  • [6] Continuous Measurement of Atomic Force Microscope Tip Wear by Contact Resonance Force Microscopy
    Killgore, Jason P.
    Geiss, Roy H.
    Hurley, Donna C.
    SMALL, 2011, 7 (08) : 1018 - 1022
  • [7] Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy
    Jakob, A. M.
    Buchwald, J.
    Rauschenbach, B.
    Mayr, S. G.
    NANOSCALE, 2014, 6 (12) : 6898 - 6910
  • [8] On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy
    Passeri, D.
    Rossi, M.
    Vlassak, J. J.
    ULTRAMICROSCOPY, 2013, 128 : 32 - 41
  • [9] Plate geometries for contact resonance atomic force microscopy: Modeling, optimization, and verification
    Aureli, Matteo
    Ahsan, Syed N.
    Shihab, Rafiul H.
    Tung, Ryan C.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (01)
  • [10] Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy
    Yablon, Dalia G.
    Gannepalli, Anil
    Proksch, Roger
    Killgore, Jason
    Hurley, Donna C.
    Grabowski, Jean
    Tsou, Andy H.
    MACROMOLECULES, 2012, 45 (10) : 4363 - 4370