On the p-adic denseness of the quotient set of a polynomial image

被引:8
作者
Miska, Piotr [1 ]
Murru, Nadir [2 ]
Sanna, Carlo [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
[2] Univ Torino, Dept Math, Turin, Italy
关键词
Denseness; p-adic numbers; Polynomials; Quotient set; Sum of powers;
D O I
10.1016/j.jnt.2018.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quotient set, or ratio set, of a set of integers A is defined as R(A) := {a/b : a,b is an element of A, b not equal 0}. We consider the case in which A is the image of Z(+) under a polynomial f is an element of Z[X], and we give some conditions under which R(A) is dense in Q(p) . Then, we apply these results to determine when R(S-m(n)) is dense in Q(p), where S-m(n) is the set of numbers of the form x(1)(n) + . . . + x(m)(n), with x(1), . . . , x(m )>= 0 integers. This allows us to answer a question posed in Garcia et al. (2017) [5]. We end leaving an open question. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 15 条
  • [1] [Anonymous], 1986, LONDON MATH SOC STUD
  • [2] Four Quotient Set Gems
    Brown, Bryan
    Dairyko, Michael
    Garcia, Stephan Ramon
    Lutz, Bob
    Someck, Michael
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (07) : 590 - 599
  • [3] On accumulation points of ratio sets of positive integers
    Bukor, J
    Toth, JT
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (06) : 502 - 504
  • [4] Bukor J., 1997, TATRA MT MATH PUBL, V11, P159
  • [5] p-adic quotient sets
    Garcia, Stephan Ramon
    Hong, Yu Xuan
    Luca, Florian
    Pinsker, Elena
    Sanna, Carlo
    Schechter, Evan
    Starr, Adam
    [J]. ACTA ARITHMETICA, 2017, 179 (02) : 163 - 184
  • [6] Quotients of Fibonacci Numbers
    Garcia, Stephan Ramon
    Luca, Florian
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (10) : 1039 - 1044
  • [7] Quotient Sets and Diophantine Equations
    Garcia, Stephan Ramon
    Selhorst-Jones, Vincent
    Poore, Daniel E.
    Simon, Noah
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (08) : 704 - 711
  • [8] Light Subsets of N with Dense Quotient Sets
    Hedman, Shawn
    Rose, David
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (07) : 635 - 641
  • [9] QUOTIENTS OF PRIMES
    HOBBY, D
    SILBERGER, DM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) : 50 - 52
  • [10] Miska P., PREPRINT, DOI [10.13140/RG.2.2.28136.57608, DOI 10.13140/RG.2.2.28136.57608]