A no-equilibrium memristive system with four-wing hyperchaotic attractor

被引:53
作者
Rajagopal, Karthikeyan [1 ]
Bayani, Atiyeh [2 ]
Khalaf, Abdul Jalil M. [3 ]
Namazi, Hamidreza [4 ]
Jafari, Sajad [2 ]
Viet-Thanh Pham [5 ]
机构
[1] Def Univ, Ctr Nonlinear Dynam, Coll Engn, Addis Ababa, Ethiopia
[2] Amirkabir Univ Technol, Biomed Engn Dept, Tehran 158754413, Iran
[3] Minist Higher Educ & Sci Res, Baghdad, Iraq
[4] Monash Univ, Sch Engn, Selangor, Malaysia
[5] Ton Duc Thang Univ, Modeling Evolutionary Algorithms Simulat & Artifi, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
基金
美国国家科学基金会;
关键词
Memristive systems; Hyperchaos; Hidden attractors; Multistability; Adaptive sliding mode; HIDDEN ATTRACTORS; EXTREME MULTISTABILITY; FPGA IMPLEMENTATION; CHAOTIC ATTRACTOR; CIRCUIT; SYNCHRONIZATION; REALIZATION; DYNAMICS;
D O I
10.1016/j.aeue.2018.08.022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new memristive system is proposed in this paper which can have no equilibrium and a line of equilibrium based on the value of its controlling parameter. Also, changing that parameter can cause the system having both chaotic and hyperchaotic solutions. This system has a multi-wing strange attractor. Dynamical properties of this system such as Lyapunov exponents and bifurcation diagram are calculated. This system belongs to the category of systems with hidden and multistable attractors. A system with all the above-mentioned properties is not common in the literature. Finally, an adaptive sliding mode control method is applied to synchronize this chaotic system. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 59 条
[1]  
[Anonymous], 2010, CHAOS SYNCHRONIZATIO
[2]  
[Anonymous], INT J PARALLEL EMERG
[3]   Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator [J].
Bao, B. C. ;
Wu, P. Y. ;
Bao, H. ;
Wu, H. G. ;
Zhang, X. ;
Chen, M. .
CHAOS SOLITONS & FRACTALS, 2018, 109 :146-153
[4]   Hidden extreme multistability in memristive hyperchaotic system [J].
Bao, B. C. ;
Bao, H. ;
Wang, N. ;
Chen, M. ;
Xu, Q. .
CHAOS SOLITONS & FRACTALS, 2017, 94 :102-111
[5]   Extreme multistability in a memristive circuit [J].
Bao, Bo-Cheng ;
Xu, Quan ;
Bao, Han ;
Chen, Mo .
ELECTRONICS LETTERS, 2016, 52 (12) :1008-1009
[6]   Three-Dimensional Memristive Hindmarsh-Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors [J].
Bao, Bocheng ;
Hu, Aihuang ;
Bao, Han ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan .
COMPLEXITY, 2018,
[7]   Coexisting infinitely many attractors in active band-pass filter-based memristive circuit [J].
Bao, Bocheng ;
Jiang, Tao ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan ;
Hu, Yihua .
NONLINEAR DYNAMICS, 2016, 86 (03) :1711-1723
[8]   Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria [J].
Bao, Han ;
Wang, Ning ;
Bao, Bocheng ;
Chen, Mo ;
Jin, Peipei ;
Wang, Guangyi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 :264-275
[9]   A GALLERY OF CHAOTIC OSCILLATORS BASED ON HP MEMRISTOR [J].
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia ;
Gambuzza, Lucia Valentina .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05)
[10]   MEMRISTIVE CHAOTIC CIRCUITS BASED ON CELLULAR NONLINEAR NETWORKS [J].
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia ;
Gambuzza, Lucia Valentina ;
Sciuto, Gregorio .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03)