Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy

被引:21
作者
Mondal, Partha Pratim [1 ]
Diaspro, Alberto [2 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Nanobioimaging Lab, Bangalore 560012, Karnataka, India
[2] Italian Inst Technol, I-16163 Genoa, Italy
来源
SCIENTIFIC REPORTS | 2011年 / 1卷
关键词
2-PHOTON EXCITATION; LIGHT-MICROSCOPY; APERTURE; FIELD; RESOLUTION; NANOSCOPY; DEPTH; DEEP;
D O I
10.1038/srep00149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fast three-dimensional (3D) imaging requires parallel optical slicing of a specimen with an efficient detection scheme. The generation of multiple localized dot-like excitation structures solves the problem of simultaneous slicing multiple specimen layers, but an efficient detection scheme is necessary. Confocal theta detection (detection at 90 degrees to the optical axis) provides a suitable detection platform that is capable of cross-talk-free fluorescence detection from each nanodot (axial dimension approximate to 150 nm). Additionally, this technique has the unique feature of imaging a specimen at a large working distance with super-resolution capabilities. Polarization studies show distinct field structures for fixed and fluid samples, indicating a non-negligible field-dipole interaction. The realization of the proposed imaging technique will advance and diversify multiphoton fluorescence microscopy for numerous applications in nanobioimaging and optical engineering.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Comparison of objective lenses for multiphoton microscopy in turbid samples
    Singh, Avtar
    McMullen, Jesse D.
    Doris, Eli A.
    Zipfel, Warren R.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2015, 6 (08): : 3113 - 3127
  • [32] Multiphoton microscopy in dermatological imaging
    Tsai, Tsung-Hua
    Jee, Shiou-Hwa
    Dong, Chen-Yuan
    Lin, Sung-Jan
    [J]. JOURNAL OF DERMATOLOGICAL SCIENCE, 2009, 56 (01) : 1 - 8
  • [33] Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications
    Morawski, Ireneusz
    Spiegelberg, Richard
    Korte, Stefan
    Voigtlaender, Bert
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (12)
  • [34] Dual-channel radially-polarized surface plasmon microscopy for simultaneous detection of fluorescence and linear scattering of nanospheres
    Sung, Chih-Hsiang
    Chauvat, Dominique
    Zyss, Joseph
    Lee, Chih-Kung
    [J]. NANOPHOTONICS III, 2010, 7712
  • [35] Quantitative Detection of Single Molecules in Fluorescence Microscopy Images
    Peterson, Eric M.
    Harris, Joel M.
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (01) : 189 - 196
  • [36] Spectral image scanning microscopy
    Strasser, Franziska
    Offterdinger, Martin
    Piestun, Rafael
    Jesacher, Alexander
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (05): : 2513 - 2527
  • [37] Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy
    Zhang, Yide
    Khan, Aamir A.
    Vigil, Genevieve D.
    Howard, Scott S.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (07) : B1 - B11
  • [38] Multicolor fluorescence microscopy using static light sheets and a single-channel detection
    Licea-Rodriguez, Jacob
    Figueroa-Melendez, Alfredo
    Falaggis, Konstantinos
    Plata-Sanchez, Marcos
    Riquelme, Meritxell
    Rocha-Mendoza, Israel
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (01)
  • [39] Simultaneous Scanning Force/Tunneling Microscopy Using a Quartz Cantilever with a Tungsten Tip
    Morita, Ken-Ichi
    Sugimoto, Yoshiaki
    Abe, Masayuki
    Morita, Seizo
    [J]. APPLIED PHYSICS EXPRESS, 2011, 4 (11)
  • [40] Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination
    Kim, Taejoong
    Gweon, DaeGab
    Lee, Jun-Hee
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (05)