Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy

被引:21
作者
Mondal, Partha Pratim [1 ]
Diaspro, Alberto [2 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Nanobioimaging Lab, Bangalore 560012, Karnataka, India
[2] Italian Inst Technol, I-16163 Genoa, Italy
来源
SCIENTIFIC REPORTS | 2011年 / 1卷
关键词
2-PHOTON EXCITATION; LIGHT-MICROSCOPY; APERTURE; FIELD; RESOLUTION; NANOSCOPY; DEPTH; DEEP;
D O I
10.1038/srep00149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fast three-dimensional (3D) imaging requires parallel optical slicing of a specimen with an efficient detection scheme. The generation of multiple localized dot-like excitation structures solves the problem of simultaneous slicing multiple specimen layers, but an efficient detection scheme is necessary. Confocal theta detection (detection at 90 degrees to the optical axis) provides a suitable detection platform that is capable of cross-talk-free fluorescence detection from each nanodot (axial dimension approximate to 150 nm). Additionally, this technique has the unique feature of imaging a specimen at a large working distance with super-resolution capabilities. Polarization studies show distinct field structures for fixed and fluid samples, indicating a non-negligible field-dipole interaction. The realization of the proposed imaging technique will advance and diversify multiphoton fluorescence microscopy for numerous applications in nanobioimaging and optical engineering.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Optical STEM detection for scanning electron microscopy
    Kievits, Arent J.
    Duinkerken, B. H. Peter
    Fermie, Job
    Lane, Ryan
    Giepmans, Ben N. G.
    Hoogenboom, Jacob P.
    ULTRAMICROSCOPY, 2024, 256
  • [22] The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy
    Young, P. A.
    Clendenon, S. G.
    Byars, J. M.
    Dunn, K. W.
    JOURNAL OF MICROSCOPY, 2011, 242 (02) : 148 - 156
  • [23] Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy
    Guo, Rongli
    Barnea, Itay
    Shaked, Natan T.
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (04): : 1869 - 1881
  • [24] Fluorescence Signal Generation Optimization by Optimal Filling of the High Numerical Aperture Objective Lens for High-Order Deep-Tissue Multiphoton Fluorescence Microscopy
    Wang, Ke
    Liang, Runfu
    Qiu, Ping
    IEEE PHOTONICS JOURNAL, 2015, 7 (06):
  • [25] Revisit Laser Scanning Fluorescence Microscopy Performance under Fluorescence-lifetime-limited Regime
    Chan, Antony C.
    Wong, Terence T. W.
    Wong, Kenneth K. Y.
    Lam, Edmund Y.
    Tsia, Kevin K.
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XII, 2014, 8947
  • [26] Clinical multiphoton and CARS microscopy
    Breunig, G.
    Weinigel, M.
    Darvin, M. E.
    Lademann, J.
    Koenig, K.
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XII, 2012, 8226
  • [27] Simultaneous Interfacial Reactivity and Topography Mapping with Scanning Ion Conductance Microscopy
    Momotenko, Dmitry
    McKelvey, Kim
    Kang, Minkyung
    Meloni, Gabriel N.
    Unwin, Patrick R.
    ANALYTICAL CHEMISTRY, 2016, 88 (05) : 2838 - 2846
  • [28] Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy
    Rupprecht, Peter
    Prendergast, Andrew
    Wyart, Claire
    Friedrich, Rainer W.
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (05): : 1656 - 1671
  • [29] Comparison of objective lenses for multiphoton microscopy in turbid samples
    Singh, Avtar
    McMullen, Jesse D.
    Doris, Eli A.
    Zipfel, Warren R.
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (08): : 3113 - 3127
  • [30] Multiphoton microscopy in dermatological imaging
    Tsai, Tsung-Hua
    Jee, Shiou-Hwa
    Dong, Chen-Yuan
    Lin, Sung-Jan
    JOURNAL OF DERMATOLOGICAL SCIENCE, 2009, 56 (01) : 1 - 8