Effects of Fly Ash Particle Sizes on the Compressive Strength and Fracture Toughness of High Performance Concrete

被引:1
|
作者
Cheng, An-Shun [1 ]
Huang, Yue-Lin [1 ]
Huang, Chung-Ho [2 ]
Yen, Tsong [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Civil Engn, 250 Kuo Kwang Rd, Taichung 40227, Taiwan
[2] Dahan Inst Technol, Dept Civil Engn, Hualien, Taiwan
来源
MATERIALS AND DESIGN, PTS 1-3 | 2011年 / 284-286卷
关键词
HPC; fly ash; particle size; strength; fracture toughness;
D O I
10.4028/www.scientific.net/AMR.284-286.984
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The study aims to research the effect of the particle size of fly ash on the compressive strength and fracture toughness of high performance concrete (HPC). In all HPC mixtures, the water-to-binder ratio selected is 0.35; the cement replacement ratios includes 0%, 10% and 20%; the particle sizes of fly ash have three types of passing through sieves No. 175, No. 250 and No. 325. Three-point-bending test was adopted to measure the load-deflection relations and the maximum loads to determine the fracture energy (G(F)) and the critical stress intensity factor (K-IC(S)). Test results show that adding fly ash in HPC apparently enhances the late age strengths of HPC either for replacement ratio of 10% or 20%, in which the concrete with 10% fly ash shows the higher effect. In addition, the smaller the particle size is the better the late age concrete strength will be. The HPC with the finer fly ash can have higher strength development and the values of GF and K-IC(S) due to the facts of better filling effect and pozzolanic reaction. At late age, the G(F) and K-IC(S) values of concrete with 10% fly ash are all higher than those with 20% fly ash.
引用
收藏
页码:984 / +
页数:2
相关论文
共 50 条
  • [21] Experimental investigation of compressive strength for fly ash on high strength concrete C-55 grade
    Fantu, Temesgen
    Alemayehu, Getasew
    Kebede, Getachew
    Abebe, Yeshi
    Selvaraj, Senthil Kumaran
    Paramasivam, Velmurugan
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 7507 - 7517
  • [22] Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar
    Cho, Young Keun
    Jung, Sang Hwa
    Choi, Young Cheol
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 204 : 255 - 264
  • [23] Effect of parameters on the compressive strength of fly ash based geopolymer concrete
    Chithambaram, S. Jeeva
    Kumar, Sanjay
    Prasad, Madan M.
    Adak, Dibyendu
    STRUCTURAL CONCRETE, 2018, 19 (04) : 1202 - 1209
  • [24] Effect of fly ash and nanosilica on compressive strength of concrete at early age
    Garcia, N. M.
    Zapata, L. E.
    Suarez, O. M.
    Cabrera-Rios, M.
    ADVANCES IN APPLIED CERAMICS, 2015, 114 (02) : 99 - 106
  • [25] Compressive strength and density of fly-ash substituted soil-cement concrete
    Kawamura, M
    Kasai, Y
    ENVIRONMENTAL ECOLOGY AND TECHNOLOGY OF CONCRETE, 2006, 302-303 : 376 - 383
  • [26] Prediction model of compressive strength development of fly-ash concrete
    Hwang, K
    Noguchi, T
    Tomosawa, F
    CEMENT AND CONCRETE RESEARCH, 2004, 34 (12) : 2269 - 2276
  • [27] Proposal of a Simplified Prediction Formula for Compressive Strength of Fly Ash Concrete
    Zhang, Wenbo
    Yoshitake, Isamu
    Saitoh, Tadashi
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 1201 - +
  • [28] COMPRESSIVE STRENGTH OPTIMIZATION OF CONCRETE MIXED WITH WASTE CERAMICS AND FLY ASH
    Elevado, Kenneth Jae T.
    Galupino, Joenel G.
    Gallardo, Ronaldo S.
    INTERNATIONAL JOURNAL OF GEOMATE, 2019, 16 (53): : 135 - 140
  • [29] The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete
    Hannesson, Gudmundur
    Kuder, Katherine
    Shogren, Rob
    Lehman, Dawn
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 30 : 161 - 168
  • [30] Influence of ultrafine fly ash composite on the fluidity and compressive strength of concrete
    Liu, BJ
    Xie, YJ
    Zhou, SQ
    Yuan, QL
    CEMENT AND CONCRETE RESEARCH, 2000, 30 (09) : 1489 - 1493