WEIGHTED A-STATISTICAL CONVERGENCE AND BOGEL APPROXIMATION BY OPERATORS OF EXPONENTIAL TYPE

被引:0
作者
Agrawal, P. N.
Acu, A. M.
Chauhan, R.
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
[2] Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Str Dr I Ratiu,No. 5–7, Sibiu
[3] Department of Mathematics, K. G. K. (P. G.) College, Moradabad
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2022年 / 16卷 / 03期
关键词
Rate of convergence; modulus of continuity; Bo?gel continuous; rth order gen-eralization; GBS operator; weighted A-statistical convergence; DURRMEYER OPERATORS; THEOREMS;
D O I
10.7153/jmi-2022-16-57
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proper definition of an exponential type operator proposed by Ismail and May [21] so that it acts from C(S) into C(S) and explore its non-multiplicativity, rth order generalization and weighted A-statistical convergence in the univariate case. Next, we define properly the associated tensor product of the operators and investigate its approximation proper-ties. Lastly, we introduce the associated Generalized Boolean Sum (GBS) operators and present error estimates using mixed modulus of smoothness for Bo center dot gel continuous functions.
引用
收藏
页码:827 / 828
页数:2
相关论文
共 38 条
[1]   Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators [J].
Acar, Tuncer ;
Aral, Ali ;
Mohiuddine, S. A. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2) :655-662
[2]   Some approximation properties by a class of bivariate operators [J].
Acu, Ana Maria ;
Acar, Tuncer ;
Muraru, Carmen-Violeta ;
Radu, Voichita Adriana .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) :5551-5565
[3]  
ARBOSU D. B, 2003, AN STIINT U OVIDIUS, V11, P1
[4]   A TEST FUNCTION THEOREM AND APPROXIMATION BY PSEUDOPOLYNOMIALS [J].
BADEA, C ;
BADEA, I ;
GONSKA, HH .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (01) :53-64
[5]  
Badea C., 1988, J. Approx. Theory Appl, V4, P95
[6]  
BADEA I., 1973, STUD U BABES BOLYAI, V18, P69
[7]  
Barbosu D, 2000, Math. Notes (Miskolc), V1, P3
[8]   On certain GBS-Durrmeyer operators based on q-integers [J].
Barbosu, Dan ;
Acu, Ana-Maria ;
Muraru, Carmen Violeta .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (02) :368-380
[9]   Blending type approximation by bivariate generalized Bernstein type operators [J].
Baxhaku, Behar ;
Kajla, Arun .
QUAESTIONES MATHEMATICAE, 2020, 43 (10) :1449-1465
[10]  
Bögel K, 1935, J REINE ANGEW MATH, V173, P5