Quantum transport in ultra-scaled double-gate MOSFETs: A Wigner function-based Monte Carlo approach

被引:23
|
作者
Sverdlov, V
Gehring, A
Kosina, H
Selberherr, S
机构
[1] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
[2] AMD Saxony LLC & Co KG, D-01109 Dresden, Germany
关键词
device simulation; quantum transport; Wigner equation; double-gate MOSFET;
D O I
10.1016/j.sse.2005.07.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Source-to-drain current including tunneling in deca-nanometer double-gate MOSFETs is studied using a Monte Carlo approach for the Wigner transport equation. This approach allows the effect of scattering to be included. The subband structure is calculated by means of post-processing results from the device simulator (MINIMOS)-NT, and the contribution of the lowest subband is determined by the quantum transport simulation. Intersubband coupling elements are explicitly calculated and proven to be small in double-gate MOSFETs. The simulation results clearly show an increasing tunneling component of the drain current with decreasing gate length. For long gate length the semi-classical result is recovered. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1510 / 1515
页数:6
相关论文
共 21 条