Continuity of the Mass Loss of the World's Glaciers and Ice Caps From the GRACE and GRACE Follow-On Missions

被引:127
作者
Ciraci, E. [1 ]
Velicogna, I [1 ,2 ]
Swenson, S. [3 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
基金
美国国家航空航天局;
关键词
gravity; glacier; sea level; climate model; hydrology; freshwater; SEA-LEVEL RISE; TIME-VARIABLE GRAVITY; ARCTIC GLACIERS; BALANCE; CLIMATE; ARCHIPELAGO; VARIABILITY; GREENLAND; SVALBARD; ICELAND;
D O I
10.1029/2019GL086926
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We use time series of time-variable gravity from the Gravitational Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions to evaluate the mass balance of the world's glaciers and ice caps (GIC) for the time period April 2002 to September 2019, excluding Antarctica and Greenland peripheral glaciers. We demonstrate continuity of the mass balance record across the GRACE/GRACE-FO data gap using independent data from the GMAO Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. We report an average mass loss of 281.5 +/- 30 Gt/yr, an acceleration of 50 +/- 20 Gt/yr per decade, and a 13-mm cumulative sea level rise for the analyzed period. Seven regions dominate the mass loss, with the largest share from the Arctic: Alaska (72.5 +/- 8 Gt/yr), Canadian Arctic Archipelago (73.0 +/- 9 Gt/yr), Southern Andes (30.4 +/- 13 Gt/yr), High Mountain Asia (HMA) (28.8 +/- 11 Gt/yr), Russian Arctic (20.2 +/- 6 Gt/yr), Iceland (15.9 +/- 4 Gt/yr), and Svalbard (12.1 +/- 4 Gt/yr). At the regional level, the analysis of acceleration is complicated by a strong interannual to decadal variability in mass balance that is well reproduced by the GRACE-calibrated MERRA-2 data.
引用
收藏
页数:11
相关论文
共 69 条
[1]   Precipitation and atmospheric circulation patterns at mid-latitudes of Asia [J].
Aizen, EM ;
Aizen, VB ;
Melack, JM ;
Nakamura, T ;
Ohta, T .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2001, 21 (05) :535-556
[2]   Response of Hofsjokull and southern Vatnajokull, Iceland, to climate change [J].
Aoalgeirsdottir, G. ;
Johannesson, T. ;
Bjoernsson, H. ;
Palsson, F. ;
Sigurosson, O. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2006, 111 (F3)
[3]  
Berry W.D., 1985, MULTIPLE REGRESSION
[4]  
Bettadpur S., 2012, UTCSR Level-2 Processing Standards Document
[5]   Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age [J].
Bjornsson, Helgi ;
Palsson, Finnur ;
Gudmundsson, Sverrir ;
Magnusson, Eyjolfur ;
Adalgeirsdottir, Gudfinna ;
Johannesson, Tomas ;
Berthier, Etienne ;
Sigurdsson, Oddur ;
Thorsteinsson, Thorsteinn .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (08) :1546-1550
[6]   The State and Fate of Himalayan Glaciers [J].
Bolch, T. ;
Kulkarni, A. ;
Kaab, A. ;
Huggel, C. ;
Paul, F. ;
Cogley, J. G. ;
Frey, H. ;
Kargel, J. S. ;
Fujita, K. ;
Scheel, M. ;
Bajracharya, S. ;
Stoffel, M. .
SCIENCE, 2012, 336 (6079) :310-314
[7]  
Bosilovich M. G., 2015, "MERRA-2: Initial Evaluation of the Climate. NASA Global Modeling and Assimilation Office. 43."
[8]  
Brun F, 2017, NAT GEOSCI, V10, P668, DOI [10.1038/NGEO2999, 10.1038/ngeo2999]
[9]  
Burnham KP., 2002, Model selection and multi-model inference: apractical information-theoretic approach, V2, DOI [10.1007/b97636, DOI 10.1007/B97636]
[10]   Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013 [J].
Carr, J. Rachel ;
Bell, Heather ;
Killick, Rebecca ;
Holt, Tom .
CRYOSPHERE, 2017, 11 (05) :2149-2174