Density functional theory study of H2O adsorption on different sphalerite surfaces

被引:1
|
作者
Deng, Zheng-bin [1 ,2 ,3 ,4 ]
Tong, Xiong [4 ,5 ]
Huang, Ling-yun [4 ,5 ]
Xie, Xian [4 ,5 ]
机构
[1] Guizhou Univ, Min Coll, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Natl & Local Joint Lab Engn Effect Utilizat Reg M, Guiyang 550025, Guizhou, Peoples R China
[3] Guizhou Univ, Guizhou Key Lab Comprehens Utilizat Nonmetall Min, Guiyang 550025, Guizhou, Peoples R China
[4] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[5] Kunming Univ Sci & Technol, Fac Land & Resource Engn, Kunming 650093, Yunnan, Peoples R China
来源
基金
芬兰科学院;
关键词
density functional theory; sphalerite; water adsorption; hydrophobicity;
D O I
10.5277/ppmp18111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effects of In, Ge, Fe substitution in the lattice of sphalerite on wettability were usually ignored, therefore the optimal flotation condition could be difficult to find due to lacking of sufficient theoretical study on water adsorption, resulting lower recoveries of different sphalerites. Adsorption of H2O on different sphalerite surfaces was studied using density functional theory (DFT) method. All computational models were built in a vacuum environment to eliminate the effects of oxygen and other factors. H2O molecule prefers to stay with ideal sphalerite, indium-beard sphalerite, germanium-beard sphalerite and marmatite surfaces rather than water. Compared with ideal sphalerite surface, Fe atom improves the hydrophilicity of surface, while In and Ge atoms reduce the hydrophilicity.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [1] Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces
    Kolb, Manuel J.
    Calle-Vallejo, Federico
    Juurlink, Ludo B. F.
    Koper, Marc T. M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (13):
  • [2] Competitive Adsorption of H2O and SO2 on Catalytic Platinum Surfaces: a Density Functional Theory Study
    Ungerer, Marietjie J.
    Santos-Carballal, David
    van Sittert, Cornelia G. C. E.
    de Leeuw, Nora H.
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2021, 74 : 57 - 68
  • [3] Density functional theory study of adsorption of H2O on γ-U(110) surface
    S-L Zhu
    Y-X Yang
    Z-F Zhang
    X-H Liu
    X-F Tian
    Y Yu
    D Li
    Indian Journal of Physics, 2023, 97 : 2297 - 2306
  • [4] Density functional theory study of adsorption of H2O on γ-U(110) surface
    Zhu, S-L
    Yang, Y-X
    Zhang, Z-F
    Liu, X-H
    Tian, X-F
    Yu, Y.
    Li, D.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (08) : 2297 - 2306
  • [5] Adsorption of H2O, OH, and O on CuCl(111) surface:: A density functional theory study
    Wang, Xia
    Chen, Wen-Kai
    Sun, Bao-Zhen
    Lu, Chun-Hai
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2008, 21 (01) : 39 - 44
  • [6] A density functional theory study on the adsorption of H2O and OH on UO(100) surface
    Zheng Jin-De
    Lu Chun-Hai
    Chen Wen-Kai
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2008, 24 (09) : 1374 - 1380
  • [7] DENSITY FUNCTIONAL THEORY STUDY OF H2O ADSORPTION AND DISSOCIATION ON Al (111) SURFACE
    Yang, Lixia
    Lei, Xiaoli
    Feng, Jun
    Zhang, Yuxin
    Liu, Mingxing
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (05):
  • [8] Adsorption and reaction mechanisms of single and double H2O molecules on graphene surfaces with defects: a density functional theory study
    Liang, Zeng
    Li, Kejiang
    Wang, Ziming
    Bu, Yushan
    Zhang, Jianliang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (34) : 19071 - 19082
  • [9] Adsorption and diffusion of H2O molecule on the Be(0001) surface: A density-functional theory study
    Wang, Shuang-Xi
    Zhang, Peng
    Zhao, Jian
    Li, Shu-Shen
    Zhang, Ping
    PHYSICS LETTERS A, 2011, 375 (36) : 3208 - 3212
  • [10] Density functional study of H2O adsorption and dissociation on WC(0001)
    Zheng, Wanfang
    Chen, Litao
    Ma, Chun'an
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2014, 1039 : 75 - 80