Automated and manual classification of metallic nanoparticles with respect to size and shape by analysis of scanning electron micrographsAutomatisierte und manuelle Klassifizierung metallischer Nanopartikel nach Grosse und Form aus rasterelektronenmikroskopischen Aufnahmen

被引:10
作者
Bals, J. [1 ,2 ]
Loza, K. [1 ,2 ]
Epple, P. [1 ,2 ]
Kircher, T. [1 ,2 ]
Epple, M. [1 ,2 ]
机构
[1] Univ Duisburg Essen, Inorgan Chem, D-45117 Essen, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, D-45117 Essen, Germany
关键词
Electron microscopy; particles; nanoparticles; image analysis; machine learning; IMAGE-ANALYSIS; PARTICLE-SIZE; MICROSCOPY; SEGMENTATION;
D O I
10.1002/mawe.202100285
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Automated image analysis has been applied to scanning electron micrographs (transmission mode; STEM) of metallic nanoparticles (silver and gold; about 10 nm to 20 nm). For a reliable particle identification, scanning electron microscopic images must be recorded with distinct contrast and resolution parameters. The particles were separated from the background and classified according to shape and size by machine learning (machine learning). Training images were created with model particles cut out of real electron microscopic images. The automated analysis of the particle size (expressed as area) was well possible, but overlapping particles could not be safely separated. The assignment of particle to six different shape classes (sphere, triangle, square, pentagon, hexagon, rod) by automated analysis was difficult. The fact that real particles never have an ideal geometrical shape but are always distorted or have rough edges or cropped tips is the fundamental reason of this problem. This effect also occurred with human image evaluators and poses a considerable obstacle in the training process for machine learning. Image analysis by machine learning techniques is difficult if different human evaluators disagree on the shape assignment of given particles because a proper training cannot be provided.
引用
收藏
页码:270 / 283
页数:14
相关论文
共 31 条
[1]   Automated and manual classification of metallic nanoparticles with respect to size and shape by analysis of scanning electron micrographsAutomatisierte und manuelle Klassifizierung metallischer Nanopartikel nach Grosse und Form aus rasterelektronenmikroskopischen Aufnahmen [J].
Bals, J. ;
Loza, K. ;
Epple, P. ;
Kircher, T. ;
Epple, M. .
MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2022, 53 (03) :270-283
[2]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[3]   The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions [J].
Fievet, F. ;
Ammar-Merah, S. ;
Brayner, R. ;
Chau, F. ;
Giraud, M. ;
Mammeri, F. ;
Peron, J. ;
Piquemal, J. -Y. ;
Sicard, L. ;
Viau, G. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (14) :5187-5233
[4]   Gold Nanoparticles for Biology and Medicine [J].
Giljohann, David A. ;
Seferos, Dwight S. ;
Daniel, Weston L. ;
Massich, Matthew D. ;
Patel, Pinal C. ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) :3280-3294
[5]   Colour displays for categorical images [J].
Glasbey, Chris ;
van der Heijden, Gerie ;
Toh, Vivian F. K. ;
Gray, Alision .
COLOR RESEARCH AND APPLICATION, 2007, 32 (04) :304-309
[6]  
Groschner C.K., 2021, MICROSC MICROANAL
[7]   Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects [J].
Helmlinger, J. ;
Sengstock, C. ;
Gross-Heitfeld, C. ;
Mayer, C. ;
Schildhauer, T. A. ;
Koeller, M. ;
Epple, M. .
RSC ADVANCES, 2016, 6 (22) :18490-18501
[8]   Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media [J].
Ilett, M. ;
Wills, J. ;
Rees, P. ;
Sharma, S. ;
Micklethwaite, S. ;
Brown, A. ;
Brydson, R. ;
Hondow, N. .
JOURNAL OF MICROSCOPY, 2020, 279 (03) :177-184
[9]   Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials [J].
Isigonis, Panagiotis ;
Afantitis, Antreas ;
Antunes, Dalila ;
Bartonova, Alena ;
Beitollahi, Ali ;
Bohmer, Nils ;
Bouman, Evert ;
Chaudhry, Qasim ;
Cimpan, Mihaela Roxana ;
Cimpan, Emil ;
Doak, Shareen ;
Dupin, Damien ;
Fedrigo, Doreen ;
Fessard, Valerie ;
Gromelski, Maciej ;
Gutleb, Arno C. ;
Halappanavar, Sabina ;
Hoet, Peter ;
Jeliazkova, Nina ;
Jomini, Stephane ;
Lindner, Sabine ;
Linkov, Igor ;
Longhin, Eleonora Marta ;
Lynch, Iseult ;
Malsch, Ineke ;
Marcomini, Antonio ;
Mariussen, Espen ;
de la Fuente, Jesus M. ;
Melagraki, Georgia ;
Murphy, Finbarr ;
Neaves, Michael ;
Packroff, Rolf ;
Pfuhler, Stefan ;
Puzyn, Tomasz ;
Rahman, Qamar ;
Pran, Elise Runden ;
Semenzin, Elena ;
Serchi, Tommaso ;
Steinbach, Christoph ;
Trump, Benjamin ;
Vrcek, Ivana Vinkovic ;
Warheit, David ;
Wiesner, Mark R. ;
Willighagen, Egon ;
Dusinska, Maria .
SMALL, 2020, 16 (36)
[10]   Machine vision-driven automatic recognition of particle size and morphology in SEM images [J].
Kim, Hyojin ;
Han, Jinkyu ;
Han, T. Yong-Jin .
NANOSCALE, 2020, 12 (37) :19461-19469