Towards a robust criterion of anomalous diffusion

被引:39
作者
Sposini, Vittoria [1 ]
Krapf, Diego [2 ,3 ]
Marinari, Enzo [4 ,5 ,6 ]
Sunyer, Raimon [7 ]
Ritort, Felix [8 ]
Taheri, Fereydoon [9 ]
Selhuber-Unkel, Christine [9 ]
Benelli, Rebecca [10 ]
Weiss, Matthias [10 ]
Metzler, Ralf [11 ,12 ]
Oshanin, Gleb [13 ]
机构
[1] Univ Vienna, Fac Phys, Kolingasse 14-16, A-1090 Vienna, Austria
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
[4] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Roma 1, Ple A Moro 2, I-00185 Rome, Italy
[6] Nanotech CNR, UOS Roma, Ple A Moro 2, I-00185 Rome, Italy
[7] Univ Barcelona, Fac Med, Dept Biomed, Unitat Biofis & Bioengn, Diagonal 647, Barcelona 08028, Spain
[8] Univ Barcelona, Fac Fis, Condensed Matter Phys Dept, Small Biosyst Lab, Diagonal 647, Barcelona 08028, Spain
[9] Heidelberg Univ, Inst Mol Syst Engn & Adv Mat IMSEAM, INF 225, D-69120 Heidelberg, Germany
[10] Univ Bayreuth, Expt Phys 1, D-95440 Bayreuth, Germany
[11] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[12] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[13] Sorbonne Univ, Lab Phys Theor Mat Condensee, CNRS, UMR 7600, 4 Pl Jussieu, F-75252 Paris 05, France
关键词
PARTICLE TRACKING; SINGLE MOLECULES; DYNAMICS; TRAJECTORIES; TRANSPORT; ACCURACY;
D O I
10.1038/s42005-022-01079-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian-or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. Anomalous-diffusion identifies the departure of diffusive dynamics from the traditional Brownian-motion and is a signature feature of a large number of complex soft-matter and biological systems. This article reports an analysis of an easy to implement method to decide on the type of an apparent anomaly, even in the presence of localisation errors.
引用
收藏
页数:10
相关论文
共 77 条
[1]  
Allan Daniel B, 2021, Zenodo, DOI 10.5281/ZENODO.4682814
[2]  
[Anonymous], 2012, Single Particle Tracking and Single Molecule Energy Transfer
[3]   Chromosomal locus tracking with proper accounting of static and dynamic errors [J].
Backlund, Mikael P. ;
Joyner, Ryan ;
Moerner, W. E. .
PHYSICAL REVIEW E, 2015, 91 (06)
[4]   STRANGE KINETICS of single molecules in living cells [J].
Barkai, Eli ;
Garini, Yuval ;
Metzler, Ralf .
PHYSICS TODAY, 2012, 65 (08) :29-35
[5]   From sub- to superdiffusion: fractional Brownian motion of membraneless organelles in early C. elegans embryos [J].
Benelli, Rebecca ;
Weiss, Matthias .
NEW JOURNAL OF PHYSICS, 2021, 23 (06)
[6]  
Beran J., 2016, Long-Memory Processes
[7]   Statistics of camera-based single-particle tracking [J].
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2010, 82 (01)
[8]   Distribution of the least-squares estimators of a single Brownian trajectory diffusion coefficient [J].
Boyer, Denis ;
Dean, David S. ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[9]   Loss of lamin A function increases chromatin dynamics in the nuclear interior [J].
Bronshtein, I. ;
Kepten, E. ;
Kanter, I. ;
Berezin, S. ;
Lindner, M. ;
Redwood, Abena B. ;
Mai, S. ;
Gonzalo, S. ;
Foisner, R. ;
Shav-Tal, Y. ;
Garini, Y. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells [J].
Bronstein, I. ;
Israel, Y. ;
Kepten, E. ;
Mai, S. ;
Shav-Tal, Y. ;
Barkai, E. ;
Garini, Y. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)