A MAPPING ASSOCIATED TO h-CONVEX VERSION OF THE HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS

被引:32
作者
Delavar, M. Rostamian [1 ]
De La Sen, M. [2 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
[2] Univ Basque Country, Inst Res & Dev Proc, Campus Leioa Bizkaia Aptdo 644, Bilbao 48080, Spain
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 02期
关键词
h-convex function; Hermite-Hadamard inequality; special means;
D O I
10.7153/jmi-2020-14-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a real mapping L(t) related to the h-convex version of the Hermite-Hadamard inequality. In special cases some generalized form of the Hermite-Hadamard inequality for convex functions are obtained. Also, as an application some inequalities for special means are given.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 11 条
  • [1] Breckner W.W., 1978, PUBL I MATH, V23, P13
  • [2] Some generalizations of Hermite-Hadamard type inequalities
    Delavar, M. Rostamian
    De La Sen, M.
    [J]. SPRINGERPLUS, 2016, 5
  • [3] DELAVAR M. ROSTAMIAN, EXTENSION INEQ UNPUB
  • [4] ON η-CONVEXITY
    Delavar, Mohsen Rostamian
    Dragomir, Silvestru Sever
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 203 - 216
  • [5] Dragomir S. S., 1995, SOOCHOW J MATH, V21, P335
  • [6] Dragomir S.S., 2000, Selected Topics on Hermite-Hadamard Inequalities and Applications
  • [7] DRAGOMIR SS, 1993, U BELGRAD PUBL ELEK, V4, P21
  • [8] Godunova E.K., 1985, Vycislitel, Mat. i. Fiz. Mezvuzov. Sb. Nauc. MGPI Moskva, P138
  • [9] Pecaric J., 1992, Convex functions, partial orderings, and statistical applications
  • [10] Sarikaya MZ., 2008, J. Math. Inequal, V2, P335, DOI [DOI 10.7153/JMI-02-30, 10.7153/jmi-02-30]