Score level fusion of multimodal biometrics using triangular norms

被引:75
作者
Hanmandlu, Madasu [1 ]
Grover, Jyotsana [1 ]
Gureja, Ankit [2 ]
Gupta, H. M. [1 ]
机构
[1] Indian Inst Technol, Delhi, India
[2] Jamia Millia Islamia, Delhi, India
关键词
Biometrics; Triangular norms; Multimodal authentication; Score level fusion; Decidability index; RECOGNITION;
D O I
10.1016/j.patrec.2011.06.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multimodal biometric system that alleviates the limitations of the unimodal biometric systems by fusing the information from the respective biometric sources is developed. A general approach is proposed for the fusion at score level by combining the scores from multiple biometrics using triangular norms (t-norms) due to Hamacher, Yager, Frank, Schweizer and Sklar, and Einstein product. This study aims at tapping the potential of t-norms for multimodal biometrics. The proposed approach renders very good performance as it is quite computationally fast and outperforms the score level fusion using the combination approach (min, mean, and sum) and classification approaches like SVM, logistic linear regression, MLP, etc. The experimental evaluation on three databases confirms the effectiveness of score level fusion using t-norms. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1843 / 1850
页数:8
相关论文
共 50 条
  • [41] A reduced multivariate polynomial model for multimodal biometrics and classifiers fusion
    Toh, KA
    Yau, WY
    Jiang, XD
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (02) : 224 - 233
  • [42] Analyzing State-of-the-Art Techniques for Fusion of Multimodal Biometrics
    Fernandes, Steven Lawrence
    Bala, G. Josemin
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 473 - 478
  • [43] Feature Level Fusion of Face and Palmprint Biometrics
    Kisku, Dakshina Ranjan
    Gupta, Phalguni
    Sing, Jamuna Kanta
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 512 - +
  • [44] Probabilistic graph-based feature fusion and score fusion using SIFT features for face and ear biometrics
    Kisku, Dakshina Ranjan
    Mehrotra, Hunny
    Gupta, Phalguni
    Sing, Jamuna Kanta
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXII, 2009, 7443
  • [45] An Overview of Multimodal Biometrics Using the Face and Ear
    Ma, Yichao
    Huang, Zengxi
    Wang, Xiaoming
    Huang, Kai
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [46] Multibiometrics fusion using Aczel-Alsina triangular norm
    Wang, Ning
    Lu, Li
    Gao, Ge
    Wang, Fanglin
    Li, Shi
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2014, 8 (07): : 2420 - 2433
  • [47] Score, Rank, and Decision-Level Fusion Strategies of Multicode Electromyogram-Based Verification and Identification Biometrics
    Pradhan, Ashirbad
    He, Jiayuan
    Jiang, Ning
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 1068 - 1079
  • [48] Non-stationary feature fusion of face and palmprint multimodal biometrics
    Ahmad, Muhammad Imran
    Woo, Wai Lok
    Dlay, Satnam
    [J]. NEUROCOMPUTING, 2016, 177 : 49 - 61
  • [49] Speaker Gender Recognition Using Score Level Fusion by AdaBoost
    Ichino, Masatsugu
    Komatsu, Naohisa
    Jian-Gang, Wang
    Yun, Yau Wei
    [J]. 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 648 - 653
  • [50] Score Level Fusion of Iris and Fingerprint using Wavelet Features
    Tiwari, Shailendra
    Tripathi, Sudhakar
    Arya, K. V.
    [J]. 2016 FOURTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2016, : 456 - 461