Mining Domain-Specific Accounts for Scientific Contents from Social Media

被引:0
作者
Wang, Jun [1 ]
Xiang, Junfu [2 ]
Zhang, Yun [2 ]
Uchino, Kanji [1 ]
机构
[1] Fujitsu Labs Amer, Sunnyvale, CA 94085 USA
[2] Nanjing Fujitsu Nanda Software Tech Co Ltd, Nanjing, Peoples R China
来源
ADVANCES IN WEB-BASED LEARNING, ICWL 2017 | 2017年 / 10473卷
关键词
Domain-specific scientific contents; Social network analysis; Social media;
D O I
10.1007/978-3-319-66733-1_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a machine learning based approach to automatically create an initial set of domain-specific accounts by matching real-world authors of the latest domain-specific publications to corresponding social media accounts. An efficient approach based on social network analysis is further applied to extend the initial set by finding more domain-specific accounts of various types and filtering out irrelevant general or non-domain-specific accounts. Our experiments on Twitter are used to verify feasibility and effectiveness of the proposed methods.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 5 条
[1]  
COLEMAN V., 2013, Educause Review, V48, P60
[2]  
Hadgu A.T., 2014, P 2014 ACM C WEB SCI, P23, DOI DOI 10.1145/2615569.2615676
[3]  
Jun Wang, 2015, Advances in Web-Based Learning - ICWL 2015. 14th International Conference. Proceedings: LNCS 9412, P71, DOI 10.1007/978-3-319-25515-6_7
[4]   A systematic identification and analysis of scientists on Twitter [J].
Ke, Qing ;
Ahn, Yong-Yeol ;
Sugimoto, Cassidy R. .
PLOS ONE, 2017, 12 (04)
[5]   Domain-Specific Recommendation by Matching Real Authors to Social Media Users [J].
Wang, Jun ;
Xiang, Junfu ;
Uchino, Kanji .
ADVANCES IN WEB-BASED LEARNING, (ICWL 2016), 2016, 10013 :246-252