Coherent Structures in a Population Model for Mussel-Algae Interaction

被引:15
|
作者
Ghazaryan, Anna [1 ]
Manukian, Vahagn [2 ]
机构
[1] Miami Univ Oxford, Oxford, OH 45056 USA
[2] Miami Univ Hamilton, Hamilton, OH 45011 USA
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2015年 / 14卷 / 02期
基金
美国国家科学基金会;
关键词
traveling wave; geometric singular perturbation theory; bifurcation theory; population dynamics; SINGULAR PERTURBATION-THEORY; SPATIAL-PATTERNS; VECTOR-FIELDS; BEDS; EQUATIONS;
D O I
10.1137/130949944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a known model that describes formation of mussel beds on soft sediments. The model consists of nonlinearly coupled partial differential equations that capture evolution of mussel biomass on the sediment and algae in the water layer overlying the mussel bed. The system accounts for the diffusive spread of mussels, while the diffusion of algae is neglected and at the same time the tidal flow of the water is considered to be the main source of transport for algae but does not affect mussels. Therefore, both the diffusion and the advection matrices in the system are singular. A numerical investigation of this system in some parameter regimes is known. We present a systematic analytic treatment of this model. Among other techniques, we use geometric singular perturbation theory to analyze the nonlinear mechanisms of pattern and wave formation in this system.
引用
收藏
页码:893 / 913
页数:21
相关论文
共 23 条
  • [1] Wavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction
    Holzer, Matt
    Popovic, Nikola
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 431 - 478
  • [2] A stochastic mussel-algae model under regime switching
    Xie, Yan
    Liu, Zhijun
    Qi, Ke
    Shangguan, Dongchen
    Wang, Qinglong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (05) : 4794 - 4811
  • [3] Bifurcation Analysis in a Diffusive Mussel-Algae Model with Delay
    Shen, Zuolin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (11):
  • [4] Nonlinear stability analyses of Turing patterns for a mussel-algae model
    Cangelosi, Richard A.
    Wollkind, David J.
    Kealy-Dichone, Bonni J.
    Chaiya, Inthira
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (06) : 1249 - 1294
  • [5] Stationary Pattern of a Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (04)
  • [6] Spatiotemporal Patterns in a Delayed Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [7] Dynamics and pattern formation in a reaction-diffusion-advection mussel-algae model
    Wang, Jinfeng
    Tong, Xue
    Song, Yongli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [8] Spatiotemporal dynamics for a diffusive mussel-algae model near a Hopf bifurcation point
    Zhong, Shihong
    Cheng, Xuehan
    Liu, Biao
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [9] Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation
    Song, Yongli
    Jiang, Heping
    Liu, Quan-Xing
    Yuan, Yuan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04): : 2030 - 2062
  • [10] A QUALITATIVE ANALYSIS OF POSITIVE STEADY-STATE SOLUTIONS FOR A MUSSEL-ALGAE MODEL WITH DIFFUSION
    Guo, Gaihui
    Yang, Xiaoyi
    Yuan, Hailong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (03) : 356 - 382