Solution to the Range Problem for Combinatory Logic

被引:1
作者
Intrigila, Benedetto [1 ]
Statman, Richard [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Lambda-Calculus; Combinatory Logic; Range Problem;
D O I
10.3233/FI-2011-560
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The lambda-theory H is obtained from beta-conversion by identifying all closed unsolvable terms (or, equivalently, terms without head normal form). The range problem for the theory H asks whether a closed term has always (up to equality in H) either an infinite range or a singleton range (that is, it is a constant function). Here we give a solution to a natural version of this problem, giving a positive answer for the theory H restricted to Combinatory Logic. The method of proof applies also to the Lazy lambda-Calculus.
引用
收藏
页码:203 / 222
页数:20
相关论文
共 9 条
[1]  
Abramsky S., 1990, LAZY LAMBDA CALCULUS, P65
[2]   CONSTRUCTIVE PROOFS OF THE RANGE PROPERTY IN LAMBDA-CALCULUS [J].
BARENDREGT, H .
THEORETICAL COMPUTER SCIENCE, 1993, 121 (1-2) :59-69
[3]  
Barendregt H. P., 1984, LAMBDA CALCULUS ITS
[4]  
Bezem M., 2003, Cambridge Tracts in Theoretical Computer Science
[5]  
Curry H.B., 1972, Combinatory Logic, VII
[6]  
Hindley J. R., 1972, INTRO COMBINATORY LO
[7]  
Intrigila Benedetto, 2007, REFLECTIONS TYPE THE
[8]  
Rogers Hartley, 1987, Theory of Recursive Functions and Effective Computability
[9]  
*TLCA, TLCA LIST OP PROBL