Component structure of the vacant set induced by a random walk on a random graph

被引:0
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
机构
[1] Univ London, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2011年
关键词
GIANT COMPONENT; DEGREE SEQUENCE; REGULAR GRAPHS; DISCRETE TORUS; COVER TIME;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider random walks on two classes of random graphs and explore the likely structure of the the set of unvisited vertices (or vacant set). Let Gamma(t) be the subgraph induced by the vacant set. We show that for random graphs G(n,p) above the connectivity threshold, and for random regular graphs G(r), for constant r >= 3, there is a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for t <= (1-epsilon)t* we have a unique giant plus components of size O(log n) and for t >= (1 + epsilon)t* we have only components of size O(log n). In the case of G(r) we describe the likely degree sequence and structure of the small (O(log n)) size components.
引用
收藏
页码:1211 / 1221
页数:11
相关论文
共 15 条
  • [1] [Anonymous], 1984, CARUS MATH MONOGRAPH
  • [2] BENDER EA, 1978, NATURE, V24, P296
  • [3] Benjamini I, 2008, J EUR MATH SOC, V10, P133
  • [4] Random minimum length spanning trees in regular graphs
    Beveridge, A
    Frieze, A
    McDiarmid, C
    [J]. COMBINATORICA, 1998, 18 (03) : 311 - 333
  • [5] Bollobas B., 1980, Eur. J. Comb., P311, DOI [DOI 10.1016/S0195-6698(80)80030-8, 10.1016/S0195-6698(80)80030-8]
  • [6] CERNY J, GIANT VACANT COMPONE
  • [7] The cover time of random regular graphs
    Cooper, C
    Frieze, A
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) : 728 - 740
  • [8] The cover time of the giant component of a random graph
    Cooper, Colin
    Frieze, Alan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (04) : 401 - 439
  • [9] Feller, 1960, INTRO PROBABILITY TH, V1
  • [10] Friedman Joel, 2008, MEMOIRS AM MATH SOC, V195