On bound states concentrating on spheres for the Maxwell-Schrodinger equation

被引:153
作者
D'Aprile, T
Wei, JC
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
bound states; Maxwell-Schrodinger equation; finite dimensional reduction;
D O I
10.1137/S0036141004442793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the semiclassical limit for the following system of Maxwell - Schrodinger equations: - (h) over bar (2)/ 2m Delta v + v + omega phi v -gamma v(p) = 0, -Delta phi = 4 pi omega v(2), where (h) over bar, m, omega, gamma > 0, v, phi : R-3 --> R, 1 < p < 11/7. This system describes standing waves for the nonlinear Schrodinger equation interacting with the electrostatic field: the unknowns v and phi represent the wave function associated to the particle and the electric potential, respectively. By using localized energy method, we construct a family of positive radially symmetric bound states (v((h) over bar), phi((h) over bar)) such that v((h) over bar) concentrates around a sphere {| x| = s(0)} when (h) over bar --> 0.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 42 条
[31]   LOCATING THE PEAKS OF LEAST-ENERGY SOLUTIONS TO A SEMILINEAR NEUMANN PROBLEM [J].
NI, WM ;
TAKAGI, I .
DUKE MATHEMATICAL JOURNAL, 1993, 70 (02) :247-281
[32]   ON THE SHAPE OF LEAST-ENERGY SOLUTIONS TO A SEMILINEAR NEUMANN PROBLEM [J].
NI, WM ;
TAKAGI, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (07) :819-851
[33]   ON THE LOCATION AND PROFILE OF SPIKE-LAYER SOLUTIONS TO SINGULARLY PERTURBED SEMILINEAR DIRICHLET PROBLEMS [J].
NI, WM ;
WEI, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (07) :731-768
[34]   On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: Intermediate solutions [J].
Ni, WM ;
Takagi, I ;
Wei, JC .
DUKE MATHEMATICAL JOURNAL, 1998, 94 (03) :597-618
[35]  
NI WM, 2003, GROUND STATE SOLUTIO
[36]   ON POSITIVE MULTILUMP BOUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS UNDER MULTIPLE WELL POTENTIAL [J].
OH, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :223-253
[38]   ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
RABINOWITZ, PH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :270-291
[39]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162
[40]   ON CONCENTRATION OF POSITIVE BOUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
WANG, XF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (02) :229-244