On bound states concentrating on spheres for the Maxwell-Schrodinger equation

被引:153
作者
D'Aprile, T
Wei, JC
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
bound states; Maxwell-Schrodinger equation; finite dimensional reduction;
D O I
10.1137/S0036141004442793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the semiclassical limit for the following system of Maxwell - Schrodinger equations: - (h) over bar (2)/ 2m Delta v + v + omega phi v -gamma v(p) = 0, -Delta phi = 4 pi omega v(2), where (h) over bar, m, omega, gamma > 0, v, phi : R-3 --> R, 1 < p < 11/7. This system describes standing waves for the nonlinear Schrodinger equation interacting with the electrostatic field: the unknowns v and phi represent the wave function associated to the particle and the electric potential, respectively. By using localized energy method, we construct a family of positive radially symmetric bound states (v((h) over bar), phi((h) over bar)) such that v((h) over bar) concentrates around a sphere {| x| = s(0)} when (h) over bar --> 0.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 42 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :297-329
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[4]   Concentration around a sphere for a singularly perturbed Schrodinger equation [J].
Badiale, M ;
D'Aprile, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (07) :947-985
[5]   The semiclassical limit of the nonlinear Schrodinger equation in a radial potential [J].
Benci, V ;
D'Aprile, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :109-138
[6]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]  
COCLITE GM, 2004, ELECT J DIFFERENTIAL, V94
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]  
DAPRILE T, IN PRESS NONLINEAR D