Incoherent Soliton Turbulence in Nonlocal Nonlinear Media

被引:56
作者
Picozzi, Antonio [1 ]
Garnier, Josselin [2 ,3 ]
机构
[1] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France
[2] Univ Paris 07, Lab Probabilites & Modeles Aleatoires, F-75205 Paris, France
[3] Ecole Normale Super, CNRS, Dept Appl Math, F-75230 Paris, France
关键词
WAVE TURBULENCE; MODULATION-INSTABILITY; SCHRODINGER-EQUATION; PROPAGATION; LIGHT; CONDENSATION; DYNAMICS;
D O I
10.1103/PhysRevLett.107.233901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The long-term behavior of a modulationally unstable nonintegrable system is known to be characterized by the soliton turbulence self-organization process: It is thermodynamically advantageous for the system to generate a large-scale coherent soliton in order to reach the ("most disordered") equilibrium state. We show that this universal process of self-organization breaks down in the presence of a highly nonlocal nonlinear response. A wave turbulence approach based on a Vlasov-like kinetic equation reveals the existence of an incoherent soliton turbulence process: It is advantageous for the system to self-organize into a large-scale, spatially localized, incoherent soliton structure.
引用
收藏
页数:5
相关论文
共 53 条
[31]   Spontaneous pattern formation upon incoherent waves: From modulation-instability to steady-state [J].
Levi, Liad ;
Schwartz, Tal ;
Manela, Ofer ;
Segev, Mordechai ;
Buljan, Hrvoje .
OPTICS EXPRESS, 2008, 16 (11) :7818-7831
[32]   Relation between different formalisms describing partially incoherent wave propagation in nonlinear optical media [J].
Lisak, M ;
Helczynski, L ;
Anderson, D .
OPTICS COMMUNICATIONS, 2003, 220 (4-6) :321-323
[33]  
LITVAK AG, 1978, JETP LETT+, V27, P517
[34]   Self-trapping of partially spatially incoherent light [J].
Mitchell, M ;
Chen, ZG ;
Shih, MF ;
Segev, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :490-493
[35]  
MOUHOT C, ARXIV09042760, P43618
[36]   Wave turbulence and intermittency [J].
Newell, AC ;
Nazarenko, S ;
Biven, L .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 (152-153) :520-550
[37]   Landau damping and coherent structures in narrow-banded 1+1 deep water gravity waves [J].
Onorato, M ;
Osborne, A ;
Fedele, R ;
Serio, M .
PHYSICAL REVIEW E, 2003, 67 (04) :6
[38]   Incoherent solitons in instantaneous response nonlinear media [J].
Picozzi, A ;
Haelterman, M ;
Pitois, S ;
Millot, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :143906-1
[39]   Spectral incoherent solitons: A localized soliton behavior in the frequency domain [J].
Picozzi, Antonio ;
Pitois, Stephane ;
Millot, Guy .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[40]   Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics [J].
Picozzi, Antonio .
OPTICS EXPRESS, 2007, 15 (14) :9063-9083