Incoherent Soliton Turbulence in Nonlocal Nonlinear Media

被引:56
作者
Picozzi, Antonio [1 ]
Garnier, Josselin [2 ,3 ]
机构
[1] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France
[2] Univ Paris 07, Lab Probabilites & Modeles Aleatoires, F-75205 Paris, France
[3] Ecole Normale Super, CNRS, Dept Appl Math, F-75230 Paris, France
关键词
WAVE TURBULENCE; MODULATION-INSTABILITY; SCHRODINGER-EQUATION; PROPAGATION; LIGHT; CONDENSATION; DYNAMICS;
D O I
10.1103/PhysRevLett.107.233901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The long-term behavior of a modulationally unstable nonintegrable system is known to be characterized by the soliton turbulence self-organization process: It is thermodynamically advantageous for the system to generate a large-scale coherent soliton in order to reach the ("most disordered") equilibrium state. We show that this universal process of self-organization breaks down in the presence of a highly nonlocal nonlinear response. A wave turbulence approach based on a Vlasov-like kinetic equation reveals the existence of an incoherent soliton turbulence process: It is advantageous for the system to self-organize into a large-scale, spatially localized, incoherent soliton structure.
引用
收藏
页数:5
相关论文
共 53 条
[1]  
[Anonymous], 2001, SPATIAL SOLITONS
[2]   Condensation and thermalization of classsical optical waves in a waveguide [J].
Aschieri, P. ;
Garnier, J. ;
Michel, C. ;
Doya, V. ;
Picozzi, A. .
PHYSICAL REVIEW A, 2011, 83 (03)
[3]   Scenario of strongly nonequilibrated Bose-Einstein condensation [J].
Berloff, NG ;
Svistunov, BV .
PHYSICAL REVIEW A, 2002, 66 (01) :136031-136037
[4]   EXACT NONLINEAR PLASMA OSCILLATIONS [J].
BERNSTEIN, IB ;
GREENE, JM ;
KRUSKAL, MD .
PHYSICAL REVIEW, 1957, 108 (03) :546-550
[5]   Optical wave turbulence and the condensation of light [J].
Bortolozzo, Umberto ;
Laurie, Jason ;
Nazarenko, Sergey ;
Residori, Stefania .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (12) :2280-2284
[6]   Statistical mechanics and dynamics of solvable models with long-range interactions [J].
Campa, Alessandro ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (3-6) :57-159
[7]   Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media [J].
Christodoulides, DN ;
Eugenieva, ED ;
Coskun, TH ;
Segev, M ;
Mitchell, M .
PHYSICAL REVIEW E, 2001, 63 (03)
[8]   Incoherent solitons in instantaneous nonlocal nonlinear media [J].
Cohen, O ;
Buljan, H ;
Schwartz, T ;
Fleischer, JW ;
Segev, M .
PHYSICAL REVIEW E, 2006, 73 (01)
[9]   Condensation of classical nonlinear waves [J].
Connaughton, C ;
Josserand, C ;
Picozzi, A ;
Pomeau, Y ;
Rica, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[10]   Observation of optical spatial solitons in a highly nonlocal medium [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :113902-1