Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations

被引:41
作者
Brizard, Alain J. [1 ]
Tronko, Natalia [2 ,3 ]
机构
[1] St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA
[2] Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
plasma kinetic theory; plasma nonlinear processes; plasma toroidal confinement; plasma transport processes; Poisson equation; Tokamak devices; Vlasov equation; GUIDING-CENTER; VARIATIONAL PRINCIPLE; ANGULAR-MOMENTUM; MAXWELL-VLASOV; ENERGY;
D O I
10.1063/1.3625554
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The exact momentum conservation laws for the nonlinear gyrokinetic Vlasov-Poisson equations are derived by applying the Noether method on the gyrokinetic variational principle [A. J. Brizard, Phys. Plasmas 7, 4816 (2000)]. From the gyrokinetic Noether canonical-momentum equation derived by the Noether method, the gyrokinetic parallel momentum equation and other gyrokinetic Vlasov-moment equations are obtained. In addition, an exact gyrokinetic toroidal angular-momentum conservation law is derived in axisymmetric tokamak geometry, where the transport of parallel-toroidal momentum is related to the radial gyrocenter polarization, which includes contributions from the guiding-center and gyrocenter transformations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625554]
引用
收藏
页数:14
相关论文
共 37 条
[1]   On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields [J].
Belinfante, FJ .
PHYSICA, 1940, 7 :449-474
[2]   On the spin angular momentum of mesons [J].
Belinfante, FJ .
PHYSICA, 1939, 6 :887-898
[3]   GYROKINETIC ENERGY-CONSERVATION AND POISSON-BRACKET FORMULATION [J].
BRIZARD, A .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (07) :1381-1384
[4]   NONLINEAR GYROKINETIC MAXWELL-VLASOV EQUATIONS USING MAGNETIC COORDINATES [J].
BRIZARD, A .
JOURNAL OF PLASMA PHYSICS, 1989, 41 :541-559
[5]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[6]  
Brizard Alain J., 2009, Journal of Physics: Conference Series, V169, DOI 10.1088/1742-6596/169/1/012003
[7]   Guiding-center recursive Vlasov and Lie-transform methods in plasma physics [J].
Brizard, A. J. ;
Mishchenko, A. .
JOURNAL OF PLASMA PHYSICS, 2009, 75 :675-696
[8]   Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICS OF PLASMAS, 2000, 7 (12) :4816-4822
[9]   New variational principle for the Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5768-5771
[10]   Noether methods for fluids and plasmas [J].
Brizard, AJ .
JOURNAL OF PLASMA PHYSICS, 2005, 71 :225-236