Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition

被引:147
作者
Terrer, Cesar [1 ]
Vicca, Sara [2 ]
Stocker, Benjamin D. [1 ,3 ]
Hungate, Bruce A. [4 ,5 ]
Phillips, Richard P. [6 ]
Reich, Peter B. [7 ,8 ]
Finzi, Adrien C. [9 ]
Prentice, I. Colin [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, AXA Chair Programme Biosphere & Climate Impacts, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England
[2] Univ Antwerp, Dept Biol, Ctr Excellence PLECO Plants & Ecosyst, B-2610 Antwerp, Belgium
[3] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain
[4] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
[5] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
[6] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[7] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[8] Western Sydney Univ, Hawkesbury Inst Environm, Penrith, NSW 2751, Australia
[9] Boston Univ, Dept Biol, Boston, MA 02215 USA
基金
欧洲研究理事会; 瑞士国家科学基金会; 美国国家科学基金会;
关键词
CO2; Free-Air CO2 enrichment (FACE); mycorrhizas; N-2-fixation; nitrogen; photosynthesis; soil carbon; soil organic matter (SOM); ARBUSCULAR MYCORRHIZAL FUNGI; ATMOSPHERIC CO2; CARBON-DIOXIDE; LONG-TERM; ORGANIC-MATTER; ENRICHMENT FACE; MOJAVE DESERT; PHOTOSYNTHETIC RESPONSES; ECTOMYCORRHIZAL FUNGI; FOREST PRODUCTIVITY;
D O I
10.1111/nph.14872
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Land ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants' ability to store additional carbon (C) under rising CO2, but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N-fixing microbes. We found that N-acquisition efficiency is positively correlated with leaf-level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N-fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 149 条
  • [1] Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community
    Adair, E. Carol
    Reich, Peter B.
    Hobbie, Sarah E.
    Knops, Johannes M. H.
    [J]. ECOSYSTEMS, 2009, 12 (06) : 1037 - 1052
  • [2] What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy
    Ainsworth, EA
    Long, SP
    [J]. NEW PHYTOLOGIST, 2005, 165 (02) : 351 - 371
  • [3] Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?: A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE)
    Ainsworth, EA
    Davey, PA
    Hymus, GJ
    Osborne, CP
    Rogers, A
    Blum, H
    Nösberger, J
    Long, SP
    [J]. PLANT CELL AND ENVIRONMENT, 2003, 26 (05) : 705 - 714
  • [4] The response of photosynthesis and stomatal conductance to rising [CO2]:: mechanisms and environmental interactions
    Ainsworth, Elizabeth A.
    Rogers, Alistair
    [J]. PLANT CELL AND ENVIRONMENT, 2007, 30 (03) : 258 - 270
  • [5] Taking mycocentrism seriously:: mycorrhizal fungal and plant responses to elevated CO2
    Alberton, O
    Kuyper, TW
    Gorissen, A
    [J]. NEW PHYTOLOGIST, 2005, 167 (03) : 859 - 868
  • [6] Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover
    Allard, V
    Newton, PCD
    Lieffering, M
    Soussana, JF
    Carran, RA
    Matthew, C
    [J]. PLANT AND SOIL, 2005, 276 (1-2) : 49 - 60
  • [7] Biomass responses in a temperate European grassland through 17years of elevated CO2
    Andresen, Louise C.
    Yuan, Naiming
    Seibert, Ruben
    Moser, Gerald
    Kammann, Claudia I.
    Luterbacher, Juerg
    Erbs, Martin
    Mueller, Christoph
    [J]. GLOBAL CHANGE BIOLOGY, 2018, 24 (09) : 3875 - 3885
  • [8] Environmental Control of Root Exudation of Low-Molecular Weight Organic Acids in Tropical Rainforests
    Aoki, Maya
    Fujii, Kazumichi
    Kitayama, Kanehiro
    [J]. ECOSYSTEMS, 2012, 15 (07) : 1194 - 1203
  • [9] Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project
    Bader, Martin K. -F.
    Leuzinger, Sebastian
    Keel, Sonja G.
    Siegwolf, Rolf T. W.
    Hagedorn, Frank
    Schleppi, Patrick
    Koerner, Christian
    [J]. JOURNAL OF ECOLOGY, 2013, 101 (06) : 1509 - 1519
  • [10] Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems
    Baskaran, Preetisri
    Hyvonen, Riitta
    Berglund, S. Linnea
    Clemmensen, Karina E.
    Agren, Goeran I.
    Lindahl, Bjorn D.
    Manzoni, Stefano
    [J]. NEW PHYTOLOGIST, 2017, 213 (03) : 1452 - 1465