机构:
Albert Einstein Coll Med, Div Hematol, Dept Med, Bronx, NY 10467 USA
Albert Einstein Coll Med, Dept Anat & Struct Biol, Bronx, NY 10467 USAUS FDA, Lab Biochem & Vasc Biol, Ctr Biol Evaluat & Res, Silver Spring, MD 20993 USA
Hirsch, Rhoda E.
[2
,3
]
Friedman, Joel M.
论文数: 0引用数: 0
h-index: 0
机构:
Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY 10467 USAUS FDA, Lab Biochem & Vasc Biol, Ctr Biol Evaluat & Res, Silver Spring, MD 20993 USA
Cell free hemoglobin (Hb), becomes oxidized in the circulation during hemolytic episodes in sickle cell disease (SCD) or thalassemia and may potentially cause major complications that are damaging to the vascular system. Hemolytic anemias are commonly associated with pulmonary hypertension (PH) and often result from dysfunction of lung endothelial cells. The aim of this study was to determine the effect of different Hbs on cultured human lung endothelial function. Toward this goal, endothelial permeability, oxidative stress response parameters, glycolytic and mitochondrial bioenergetic functions were monitored in cultured human pulmonary arterial endothelial cells (HPAEC) following incubation with human adult Hb (HbA), and Hb isolated from patients with sickle cell Hb (HbS, beta V6E) and HbE (beta E26K) that commonly co-exist with beta- thalassemia. These mutant Hbs are known for their distinct oxidative profiles. HPAEC treated with the ferrous forms of HbE, HbS for 24 h showed higher loss of endothelial monolayer integrity with concomitant rise in reactive oxygen radical production, lipid hydroperoxide formation and higher expressions of oxidative stress response proteins including heme oxygenase-1 (HO-1) accompanied by a rise in uncoupled mitochondrial respiration. Loss of membrane permeability was diminished in part by haptoglobin (Hp, protein scavenger), hemopexin (Hpx, heme scavenger) or ascorbate (reducing agent). To understand the role of Hb oxidation, HPAEC were exposed to ferric or ferryl states of the mutant Hbs. Ferryl forms of all proteins caused a significant damage to the endothelial monolayer integrity at a higher degree than their respective ferric Hbs. Ferryl forms of HbS and HbE also caused a loss of respiratory chain complex activities in isolated endothelial mitochondria and basal oxygen consumption in HPAEC. However, longer incubation with ferryl Hbs produced bioenergetic reprogramming including higher degree of uncoupled respiration and glycolytic rate. The data in this report collectively indicate that higher oxidation forms of HbS and HbE cause endothelial dysfunction through distinct damaging mechanisms involving mitochondrial bioenergetic function.
机构:
Inst Nacl Cardiol Ignacio Chavez, Dept Biol Celular, Mexico City, DF, Mexico
Inst Nacl Cancerol, Subdirecc Invest Basica, Mexico City, DF, Mexico
Inst Politecn Nacl, Escuela Nacl Ciencias Biol, Posgrado CQB, Mexico City 07738, DF, MexicoInst Nacl Cardiol Ignacio Chavez, Dept Biol Celular, Mexico City, DF, Mexico
Montiel-Davalos, Angelica
Luis Ventura-Gallegos, Jose
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Dept Bioquim, Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Mexico City, DF, Mexico
Univ Nacl Autonoma Mexico, Dept Med Genom & Toxicol Ambiental IIB, Mexico City, DF, MexicoInst Nacl Cardiol Ignacio Chavez, Dept Biol Celular, Mexico City, DF, Mexico
机构:
Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LADepartment of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA
Mondal D.
Pradhan L.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LADepartment of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA
Pradhan L.
Ali M.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LADepartment of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA
Ali M.
Agrawal K.C.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA
Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA 70112Department of Pharmacology, School of Medicine, Tulane Univ. Health Sciences Center, New Orleans, LA
机构:
Univ Sains Malaysia, Bioproc Technol Div, Sch Ind Technol, Gelugor, Penang, MalaysiaUniv Sains Malaysia, Bioproc Technol Div, Sch Ind Technol, Gelugor, Penang, Malaysia