Robust Bayesian sample size determination in clinical trials
被引:41
|
作者:
Brutti, Pierpaolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, Italy
Brutti, Pierpaolo
[1
]
De Santis, Fulvio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, Italy
De Santis, Fulvio
[1
]
Gubbiotti, Stefania
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, Italy
Gubbiotti, Stefania
[1
]
机构:
[1] Univ Roma La Sapienza, Dipartimento Stat Probabillita & Stat Appl, I-00185 Rome, Italy
analysis and design priors;
Bayesian power;
Bayesian robustness;
conditional and predictive power;
evidence;
epsilon-contaminated priors;
Phase II and Phase III clinical trials;
sample size determination;
D O I:
10.1002/sim.3175
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
This article deals with determination of a sample size that guarantees the success of a trial. We follow a Bayesian approach and we say an experiment is successful if it yields a large posterior probability that an unknown parameter of interest (an unknown treatment effect or an effects-difference) is greater than a chosen threshold. In this context, a straightforward sample size criterion is to select the minimal number of observations so that the predictive probability of a successful trial is sufficiently large. In the paper we address the most typical criticism to Bayesian methods-their sensitivity to prior assumptions-by proposing a robust version of this sample size criterion. Specifically, instead of a single distribution, we consider a class of plausible priors for the parameter of interest. Robust sample sizes are then selected by looking at the predictive distribution of the lower bound of the posterior probability that the unknown parameter is greater than a chosen threshold. For their flexibility and mathematical tractability, we consider classes of E-contamination priors. As specific applications we consider sample size determination for a Phase III trial. Copyright (C) 2008 John Wiley & Sons, Ltd.
机构:
East China Normal Univ, Sch Stat, Shanghai, Peoples R ChinaEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
Xu, Menghao
Ye, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USAEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
Ye, Ting
Zhao, Jun-jun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Med, Shanghai Peoples Hosp 9, Dept Gen Dent, Shanghai, Peoples R ChinaEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
Zhao, Jun-jun
Yu, Menggang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Biostat & Med Informat, 207C WARF Off Bldg,610 Walnut St, Madison, WI 53726 USAEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R China
Tang, Niansheng
Yu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R China