Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

被引:225
作者
Sun, Yi [1 ,2 ]
Zhou, Kun [1 ]
Sun, Qian [1 ]
Liu, Jianping [1 ]
Feng, Meixin [1 ]
Li, Zengcheng [1 ]
Zhou, Yu [1 ]
Zhang, Liqun [1 ]
Li, Deyao [1 ]
Zhang, Shuming [1 ]
Ikeda, Masao [1 ]
Liu, Sheng [3 ]
Yang, Hui [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, Key Lab Nanodevices & Applicat, Suzhou 215123, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
X-RAY-DIFFRACTION; EPITAXIAL LAYERS; GAN; SILICON; DIODES; DEGRADATION; RELAXATION; OPERATION; LIGHT;
D O I
10.1038/nphoton.2016.158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature(1,2). To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si3-5. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm(-2). The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AIN/AIGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.
引用
收藏
页码:595 / 599
页数:5
相关论文
共 30 条
[1]   Laser action in GaN pyramids grown on, (111) silicon by selective lateral overgrowth [J].
Bidnyk, S ;
Little, BD ;
Cho, YH ;
Krasinski, J ;
Song, JJ ;
Yang, W ;
McPherson, SA .
APPLIED PHYSICS LETTERS, 1998, 73 (16) :2242-2244
[2]  
Chen R, 2011, NAT PHOTONICS, V5, P170, DOI [10.1038/nphoton.2010.315, 10.1038/NPHOTON.2010.315]
[3]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/NPHOTON.2016.21, 10.1038/nphoton.2016.21]
[4]   Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers [J].
Cheng, K ;
Leys, M ;
Degroote, S ;
Van Daele, B ;
Boeykens, S ;
Derluyn, J ;
Germain, M ;
Van Tendeloo, G ;
Engelen, J ;
Borghs, G .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (04) :592-598
[5]   Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence [J].
Cherns, D ;
Henley, SJ ;
Ponce, FA .
APPLIED PHYSICS LETTERS, 2001, 78 (18) :2691-2693
[6]   Microstructure of heteroepitaxial GaN revealed by x-ray diffraction [J].
Chierchia, R ;
Böttcher, T ;
Heinke, H ;
Einfeldt, S ;
Figge, S ;
Hommel, D .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :8918-8925
[7]   Strain relaxation in AlGaN multilayer structures by inclined dislocations [J].
Follstaedt, D. M. ;
Lee, S. R. ;
Allerman, A. A. ;
Floro, J. A. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
[8]   OPTICAL INTERCONNECTIONS FOR VLSI SYSTEMS [J].
GOODMAN, JW ;
LEONBERGER, FJ ;
KUNG, SY ;
ATHALE, RA .
PROCEEDINGS OF THE IEEE, 1984, 72 (07) :850-866
[9]  
Heying B, 1996, APPL PHYS LETT, V68, P643, DOI 10.1063/1.116495
[10]   Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers [J].
Justice, John ;
Bower, Chris ;
Meitl, Matthew ;
Mooney, Marcus B. ;
Gubbins, Mark A. ;
Corbett, Brian .
NATURE PHOTONICS, 2012, 6 (09) :610-614