ANALYZING THE INTERACTION OF HUMAN ACE2 AND RBD OF SPIKE PROTEIN OF SARS-COV-2 IN PERSPECTIVE OF OMICRON VARIANT

被引:4
|
作者
Samanta, Arijit [1 ]
Alam, Syed Sahajada Mahafujul [1 ]
Ali, Safdar [2 ]
Hoque, Mehboob [1 ]
机构
[1] Aliah Univ, Dept Biol Sci, Appl Biochem Lab, Kolkata 700160, India
[2] Aliah Univ, Dept Biol Sci, Clin & Appl Genom CAG Lab, Kolkata 700160, India
来源
EXCLI JOURNAL | 2022年 / 21卷
关键词
COVID-19; SARS-CoV-2; variants; Omicron; receptor binding domain; human ACE2;
D O I
10.17179/excli2022-4721
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The newly identified Omicron (B.1.1.529) variant of Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) has steered concerns across the world due to the possession of a large number of mutations leading to high infectivity and vaccine escape potential. The Omicron variant houses 32 mutations in spike (S) protein alone. The viral infectivity is determined mainly by the ability of S protein Receptor Binding Domain (RBD) to bind to the human Angiotensin I Converting Enzyme 2 (hACE2) receptor. In this paper, the interaction of the RBDs of SARSCoV-2 variants with hACE2 was analyzed by using protein-protein docking and compared with the novel Omicron variant. Our findings reveal that the Omicron RBD interacts strongly with hACE2 receptor via unique amino acid residues as compared to the Wuhan and many other variants. However, the interacting residues of RBD are found to be the same in Lamda (C.37) variant. This unique binding of Omicron RBD with hACE2 suggests an increased potential of infectivity and vaccine evasion potential of the new variant. The evolutionary drive of the SARS-CoV2 may not be exclusively driven by RBD variants but surely provides for the platform for emergence of new variants.
引用
收藏
页码:610 / 620
页数:11
相关论文
共 50 条
  • [21] SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors
    Mishra, Pushpendra Mani
    Anjum, Farhan
    Uversky, Vladimir N.
    Nandi, Chayan Kanti
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 620 : 8 - 14
  • [22] Revealing the Mechanism of SARS-CoV-2 Spike Protein Binding With ACE2
    Xie, Yixin
    Du, Dan
    Karki, Chitra B.
    Guo, Wenhan
    Lopez-Hernandez, Alan E.
    Sun, Shengjie
    Juarez, Brenda Y.
    Li, Haotian
    Wang, Jun
    Li, Lin
    COMPUTING IN SCIENCE & ENGINEERING, 2020, 22 (06) : 21 - 29
  • [23] In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment
    Sartore, Giovanni
    Bassani, Davide
    Ragazzi, Eugenio
    Traldi, Pietro
    Lapolla, Annunziata
    Moro, Stefano
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials
    Stocks, Bradley B.
    Thibeault, Marie-Pier
    L'Abbe, Denis
    Umer, Muhammad
    Liu, Yali
    Stuible, Matthew
    Durocher, Yves
    Melanson, Jeremy E.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (22) : 4861 - 4872
  • [25] Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug
    Benitez-Cardoza, Claudia Guadalupe
    Vique-Sanchez, Jose Luis
    LIFE SCIENCES, 2020, 256
  • [26] Electrostatic Interactions Are the Primary Determinant of the Binding Affinity of SARS-CoV-2 Spike RBD to ACE2: A Computational Case Study of Omicron Variants
    Sang, Peng
    Chen, Yong-Qin
    Liu, Meng-Ting
    Wang, Yu-Ting
    Yue, Ting
    Li, Yi
    Yin, Yi-Rui
    Yang, Li-Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [27] Perturbation of ACE2 Structural Ensembles by SARS-CoV-2 Spike Protein Binding
    Uyar, Arzu
    Dickson, Alex
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (09) : 5896 - 5906
  • [28] Differential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate ACE2
    Maeda, Yosuke
    Toyoda, Mako
    Kuwata, Takeo
    Terasawa, Hiromi
    Tokugawa, Umiru
    Monde, Kazuaki
    Sawa, Tomohiro
    Ueno, Takamasa
    Matsushita, Shuzo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [29] Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants
    Haycroft, Ebene R.
    Davis, Samantha K.
    Ramanathan, Pradhipa
    Lopez, Ester
    Purcell, Ruth A.
    Tan, Li Lynn
    Pymm, Phillip
    Wines, Bruce D.
    Hogarth, P. Mark
    Wheatley, Adam K.
    Juno, Jennifer A.
    Redmond, Samuel J.
    Gherardin, Nicholas A.
    Godfrey, Dale I.
    Tham, Wai-Hong
    Selva, Kevin John
    Kent, Stephen J.
    Chung, Amy W.
    MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2023, 212 (4) : 291 - 305
  • [30] Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry
    Shin, Young-Hee
    Jeong, Kiyoung
    Lee, Jihye
    Lee, Hyo Jung
    Yim, Junhyeong
    Kim, Jonghoon
    Kim, Seungtaek
    Park, Seung Bum
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (11)