KIRILLOV-FRENKEL CHARACTER FORMULA FOR LOOP GROUPS, RADIAL PART AND BROWNIAN SHEET
被引:3
|
作者:
Defosseux, Manon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Lab Mat Appl Paris 5, 45 Rue St Peres, F-75270 Paris 06, FranceUniv Paris 05, Lab Mat Appl Paris 5, 45 Rue St Peres, F-75270 Paris 06, France
Defosseux, Manon
[1
]
机构:
[1] Univ Paris 05, Lab Mat Appl Paris 5, 45 Rue St Peres, F-75270 Paris 06, France
Kirillov character formula;
loop group;
Brownian sheet;
radial part;
Doob transform;
Brownian motion in affine Weyl chamber;
QUASI-INVARIANCE;
MOTION;
D O I:
10.1214/18-AOP1278
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider the coadjoint action of a Loop group of a compact group on the dual of the corresponding centrally extended Loop algebra and prove that a Brownian motion in a Cartan subalgebra conditioned to remain in an affine Weyl chamber-which can be seen as a space time conditioned Brownian motion-is distributed as the radial part process of a Brownian sheet on the underlying Lie algebra.