Chronic co-implantation of ultraflexible neural electrodes and a cranial window

被引:12
作者
Yin, Rongkang [1 ,2 ]
Noble, Brian C. [2 ,3 ]
He, Fei [1 ,2 ]
Zolotavin, Pavlo [1 ,2 ]
Rathore, Haad [2 ,3 ]
Jin, Yifu [1 ,2 ]
Sevilla, Nicole [2 ,4 ]
Xie, Chong [1 ,2 ,4 ]
Luan, Lan [1 ,2 ,4 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
[2] Rice Univ, Rice Neuroengn Initiat, Houston, TX 77251 USA
[3] Rice Univ, Appl Phys Grad Program, Houston, TX USA
[4] Rice Univ, Dept Bioengn, Houston, TX 77251 USA
关键词
flexible electrodes; cranial window; electrophysiology; optical imaging; MICROELECTRODE ARRAYS; BRAIN; TRANSPARENT; PLASTICITY;
D O I
10.1117/1.NPh.9.3.032204
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Significance: Electrophysiological recording and optical imaging are two prevalent neurotechnologies with complementary strengths, the combined application of which can significantly improve our capacity in deciphering neural circuits. Flexible electrode arrays can support longitudinal optical imaging in the same brain region, but their mechanical flexibility makes surgical preparation challenging. Here, we provide a step-by-step protocol by which an ultraflexible nanoelectronic thread is co-implanted with a cranial window in a single surgery to enable chronic, dual-modal measurements. Aim: The method uses 1-mu m-thick polymer neural electrodes which conform to the site of implantation. The mechanical flexibility of the probe allows bending without breaking and enables long-lasting electrophysiological recordings of single-unit activities and concurrent, high-resolution optical imaging through the cranial window. Approach: The protocol describes methods and procedures to co-implant an ultraflexible electrode array and a glass cranial window in the mouse neocortex. The implantation strategy includes temporary attachment of flexible electrodes to a retractable tungsten-microwire insertion shuttle, craniotomy, stereotaxic insertion of the electrode array, skull fixation of the cranial window and electrode, and installation of a head plate. Results: The resultant implant allows simultaneous interrogation of brain activity both electrophysiologically and optically for several months. Importantly, a variety of optical imaging modalities, including wide-field fluorescent imaging, two-photon microscopy, and functional optical imaging, can be readily applied to the specific brain region where ultraflexible electrodes record from. Conclusions: The protocol describes a method for co-implantation of ultraflexible neural electrodes and a cranial window for chronic, multimodal measurements of brain activity in mice. Device preparation and surgical implantation are described in detail to guide the adaptation of these methods for other flexible neural implants and cranial windows. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics [J].
Adam, Yoav ;
Kim, Jeong J. ;
Lou, Shan ;
Zhao, Yongxin ;
Xie, Michael E. ;
Brinks, Daan ;
Wu, Hao ;
Mostajo-Radji, Mohammed A. ;
Kheifets, Simon ;
Parot, Vicente ;
Chettih, Selmaan ;
Williams, Katherine J. ;
Gmeiner, Benjamin ;
Farhi, Samouil L. ;
Madisen, Linda ;
Buchanan, E. Kelly ;
Kinsella, Ian ;
Zhou, Ding ;
Paninski, Liam ;
Harvey, Christopher D. ;
Zeng, Hongkui ;
Arlotta, Paola ;
Campbell, Robert E. ;
Cohen, Adam E. .
NATURE, 2019, 569 (7756) :413-+
[2]   Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates [J].
Barrese, James C. ;
Rao, Naveen ;
Paroo, Kaivon ;
Triebwasser, Corey ;
Vargas-Irwin, Carlos ;
Franquemont, Lachlan ;
Donoghue, John P. .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (06)
[3]   CHEMICAL + ANATOMICAL PLASTICITY OF BRAIN - CHANGES IN BRAIN THROUGH EXPERIENCE DEMANDED BY LEARNING THEORIES ARE FOUND IN EXPERIMENTS WITH RATS [J].
BENNETT, EL ;
KRECH, D ;
DIAMOND, MC ;
ROSENZWEIG, MR .
SCIENCE, 1964, 146 (364) :610-+
[4]   Three-dimensional Ca2+ imaging advances understanding of astrocyte biology [J].
Bindocci, Erika ;
Savtchouk, Iaroslav ;
Liaudet, Nicolas ;
Becker, Denise ;
Carriero, Giovanni ;
Volterra, Andrea .
SCIENCE, 2017, 356 (6339)
[5]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[6]   Neural plasticity in the ageing brain [J].
Burke, SN ;
Barnes, CA .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (01) :30-40
[7]   Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics [J].
Cardin, Jessica A. ;
Crair, Michael C. ;
Higley, Michael J. .
NEURON, 2020, 108 (01) :33-43
[8]   High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays [J].
Chung, Jason E. ;
Joo, Hannah R. ;
Fan, Jiang Lan ;
Liu, Daniel F. ;
Barnett, Alex H. ;
Chen, Supin ;
Geaghan-Breiner, Charlotte ;
Karlsson, Mattias P. ;
Karlsson, Magnus ;
Lee, Kye Y. ;
Liang, Hexin ;
Magland, Jeremy F. ;
Pebbles, Jeanine A. ;
Tooker, Angela C. ;
Greengard, Leslie F. ;
Tolosa, Vanessa M. ;
Frank, Loren M. .
NEURON, 2019, 101 (01) :21-+
[9]   A Fully Automated Approach to Spike Sorting [J].
Chung, Jason E. ;
Magland, Jeremy F. ;
Barnett, Alex H. ;
Tolosa, Vanessa M. ;
Tooker, Angela C. ;
Lee, Kye Y. ;
Shah, Kedar G. ;
Felix, Sarah H. ;
Frank, Loren M. ;
Greengard, Leslie F. .
NEURON, 2017, 95 (06) :1381-+
[10]   Laser Speckle Contrast Imaging of Cerebral Blood Flow [J].
Dunn, Andrew K. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (02) :367-377