Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

被引:56
作者
Li, Zhaokai [2 ,3 ]
Yung, Man-Hong [1 ]
Chen, Hongwei [2 ,3 ]
Lu, Dawei [2 ,3 ]
Whitfield, James D. [1 ]
Peng, Xinhua [2 ,3 ]
Aspuru-Guzik, Alan [1 ]
Du, Jiangfeng [2 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230036, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230036, Anhui, Peoples R China
关键词
ELECTRONIC-STRUCTURE; HAMILTONIANS; SIMULATION; COMPLEXITY; ALGORITHM;
D O I
10.1038/srep00088
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10(-5) decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers
引用
收藏
页数:7
相关论文
共 33 条
[11]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[12]   Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing [J].
Fortunato, EM ;
Pravia, MA ;
Boulant, N ;
Teklemariam, G ;
Havel, TF ;
Cory, DG .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (17) :7599-7606
[13]  
Helgaker T., 2000, Molecular Electronic Structure Theory
[14]   Simulating Chemistry Using Quantum Computers [J].
Kassal, Ivan ;
Whitfield, James D. ;
Perdomo-Ortiz, Alejandro ;
Yung, Man-Hong ;
Aspuru-Guzik, Alan .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 :185-207
[15]  
Kaye P., 2007, An Introduction to Quantum Computing
[16]   The complexity of the local Hamiltonian problem [J].
Kempe, J ;
Kitaev, A ;
Regev, O .
SIAM JOURNAL ON COMPUTING, 2006, 35 (05) :1070-1097
[17]   Quantum simulation of frustrated Ising spins with trapped ions [J].
Kim, K. ;
Chang, M. -S. ;
Korenblit, S. ;
Islam, R. ;
Edwards, E. E. ;
Freericks, J. K. ;
Lin, G. -D. ;
Duan, L. -M. ;
Monroe, C. .
NATURE, 2010, 465 (7298) :590-U81
[18]   Nobel Lecture: Electronic structure of matter-wave functions and density functionals [J].
Kohn, W .
REVIEWS OF MODERN PHYSICS, 1999, 71 (05) :1253-1266
[19]   Quantum computers [J].
Ladd, T. D. ;
Jelezko, F. ;
Laflamme, R. ;
Nakamura, Y. ;
Monroe, C. ;
O'Brien, J. L. .
NATURE, 2010, 464 (7285) :45-53
[20]  
Lanyon BP, 2010, NAT CHEM, V2, P106, DOI [10.1038/NCHEM.483, 10.1038/nchem.483]