Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

被引:56
作者
Li, Zhaokai [2 ,3 ]
Yung, Man-Hong [1 ]
Chen, Hongwei [2 ,3 ]
Lu, Dawei [2 ,3 ]
Whitfield, James D. [1 ]
Peng, Xinhua [2 ,3 ]
Aspuru-Guzik, Alan [1 ]
Du, Jiangfeng [2 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230036, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230036, Anhui, Peoples R China
关键词
ELECTRONIC-STRUCTURE; HAMILTONIANS; SIMULATION; COMPLEXITY; ALGORITHM;
D O I
10.1038/srep00088
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10(-5) decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers
引用
收藏
页数:7
相关论文
共 33 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[3]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[4]   Adiabatic quantum simulators [J].
Biamonte, J. D. ;
Bergholm, V. ;
Whitfield, J. D. ;
Fitzsimons, J. ;
Aspuru-Guzik, A. .
AIP ADVANCES, 2011, 1 (02)
[5]   Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance [J].
Brown, Kenneth R. ;
Clark, Robert J. ;
Chuang, Isaac L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[6]   Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator [J].
Chen, Hongwei ;
Kong, Xi ;
Chong, Bo ;
Qin, Gan ;
Zhou, Xianyi ;
Peng, Xinhua ;
Du, Jiangfeng .
PHYSICAL REVIEW A, 2011, 83 (03)
[7]   BASIS SET SELECTION FOR MOLECULAR CALCULATIONS [J].
DAVIDSON, ER ;
FELLER, D .
CHEMICAL REVIEWS, 1986, 86 (04) :681-696
[8]   NMR Implementation of a Molecular Hydrogen Quantum Simulation with Adiabatic State Preparation [J].
Du, Jiangfeng ;
Xu, Nanyang ;
Peng, Xinhua ;
Wang, Pengfei ;
Wu, Sanfeng ;
Lu, Dawei .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[9]   Quantum simulation and phase diagram of the transverse-field Ising model with three atomic spins [J].
Edwards, E. E. ;
Korenblit, S. ;
Kim, K. ;
Islam, R. ;
Chang, M. -S. ;
Freericks, J. K. ;
Lin, G. -D. ;
Duan, L. -M. ;
Monroe, C. .
PHYSICAL REVIEW B, 2010, 82 (06)
[10]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433