Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride

被引:18
作者
Mousavi, Hamze [1 ]
Jalilvand, Samira [1 ]
Kurdestany, Jamshid Moradi [2 ]
机构
[1] Razi Univ, Dept Phys, Kermanshah, Iran
[2] Univ Missouri, Dept Phys & Astron, Columbia, MO 65201 USA
关键词
Bilayer graphene; Boron-nitride; Susceptibility; Green's function; Tight-binding; ELECTRONIC-PROPERTIES; ZIGZAG GRAPHENE; NANORIBBONS;
D O I
10.1016/j.physb.2016.08.049
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the contribution of s and p orbitals on the Pauli magnetic susceptibility (PMS) and density of state (DOS) of the following three structures (1) bilayer graphene (2) bilayer boron-nitride (BN) and (3) bilayer graphene-BN within a two-band tight-binding Harrison Hamiltonian and the Green's function technique. It is shown that in all three cases, the contribution of s and p(x) or p(y) orbitals have no states around the Fermi level, while for bilayer graphene and graphene-BN the total DOS and DOS of p(z), orbital appear to be a linear function around this level. We show explicitly that for bilayer BN the contribution of p(z) orbital does not have states around the Fermi level, because of ionization energy difference between the boron (B) and nitrogen (N) atoms. We find that the bandwidth of s, p(x) or p(y) is more extension than case of p(z), orbital as a result of the Van-Hove singularities in the DOS. This leads to consideration of the PMS in two, low and high temperature, regions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 139
页数:8
相关论文
共 50 条
[31]   Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices [J].
Garcia, Andrei G. F. ;
Neumann, Michael ;
Amet, Francois ;
Williams, James R. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Goldhaber-Gordon, David .
NANO LETTERS, 2012, 12 (09) :4449-4454
[32]   Thermal conductivity, heat capacity and magnetic susceptibility of graphene and boron nitride nanoribbons [J].
Behzad, Somayeh ;
Chegel, Raad .
DIAMOND AND RELATED MATERIALS, 2018, 88 :101-109
[33]   Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures [J].
Chun-Chung Chen ;
Zhen Li ;
Li Shi ;
Stephen B. Cronin .
Nano Research, 2015, 8 :666-672
[34]   Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures [J].
Chen, Chun-Chung ;
Li, Zhen ;
Shi, Li ;
Cronin, Stephen B. .
NANO RESEARCH, 2015, 8 (02) :666-672
[35]   SYNTHESIS OF CUBIC BORON-NITRIDE FROM BORON-NITRIDE SYNTHESIZED BY PRESSURE PYROLYSIS OF BORAZINE [J].
HIRANO, S ;
FUJII, A ;
YOGO, T ;
NAKA, S .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (08) :2238-2241
[36]   COMPOSITION AND MICROSTRUCTURE OF CHEMICALLY VAPOR-DEPOSITED BORON-NITRIDE, ALUMINUM NITRIDE, AND BORON-NITRIDE + ALUMINUM NITRIDE COMPOSITES [J].
HANIGOFSKY, JA ;
MORE, KL ;
LACKEY, WJ ;
LEE, WY ;
FREEMAN, GB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (02) :301-305
[37]   Graphene Field-Effect Transistors Based on Boron-Nitride Dielectrics [J].
Meric, Inanc ;
Dean, Cory R. ;
Petrone, Nicholas ;
Wang, Lei ;
Hone, James ;
Kim, Philip ;
Shepard, Kenneth L. .
PROCEEDINGS OF THE IEEE, 2013, 101 (07) :1609-1619
[38]   AFM-IN-SEM ANALYSIS ON HETEROSTRUCTURE EDGES OF GRAPHENE AND HEXAGONAL BORON NITRIDE [J].
Kulicek, Jaroslav ;
Yamada, Takatoshi ;
Taniguchi, Takashi ;
Rezek, Bohuslav .
15TH INTERNATIONAL CONFERENCE ON NANOMATERIALS-RESEARCH & APPLICATION, NANOCON 2023, 2024, :405-409
[39]   Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate [J].
Bischoff, D. ;
Kraehenmann, T. ;
Droescher, S. ;
Gruner, M. A. ;
Barraud, C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS LETTERS, 2012, 101 (20)
[40]   Theoretical Investigation of Piezoelectric Properties of Graphene/Hexagonal Boron Nitride Hybrid Structures [J].
Baytar, Hakki Berat ;
Alyoruk, Mustafa Menderes .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (05)