Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO2 reduction

被引:15
作者
Zhao, Zhonglong [1 ]
Lu, Gang [2 ]
机构
[1] Inner Mongolia Univ, Sch Phys Sci & Technol, Hohhot 010021, Peoples R China
[2] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; OXYGEN REDUCTION; SURFACE ALLOYS; CATALYSTS; ELECTROREDUCTION; CONVERSION; ADSORPTION; CHALLENGES; ELECTRODES;
D O I
10.1039/d2sc00135g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical conversion of CO2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO2 reduction reaction (CO2RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO2RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) - a monolayer of transition metals on top of extended metal substrates - could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO2RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H-substrate antibonding interaction also leads to superior CO2RR performance on monolayer-coated penta-twinned nanowires.
引用
收藏
页码:3880 / 3887
页数:8
相关论文
共 48 条
[1]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[2]   ENERGY FLUCTUATIONS INDUCED BY THE NOSE THERMOSTAT [J].
BYLANDER, DM ;
KLEINMAN, L .
PHYSICAL REVIEW B, 1992, 46 (21) :13756-13761
[3]   Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons [J].
Cheng, Mu-Jeng ;
Clark, Ezra L. ;
Pham, Hieu H. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2016, 6 (11) :7769-7777
[4]   Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets [J].
Deringer, Volker L. ;
Tchougreeff, Andrei L. ;
Dronskowski, Richard .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (21) :5461-5466
[5]   Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes [J].
Elgrishi, Noemie ;
Chambers, Matthew B. ;
Fontecave, Marc .
CHEMICAL SCIENCE, 2015, 6 (04) :2522-2531
[6]   ONIOM DFT study of the adsorption of cytosine on the Au/Ag and Ag/Au bimetallic nanosurfaces: The effect of sublayer [J].
Farrokhpour, H. ;
Ghandehari, M. ;
Eskandari, K. .
APPLIED SURFACE SCIENCE, 2018, 457 :712-725
[7]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[8]   Industrial carbon dioxide capture and utilization: state of the art and future challenges [J].
Gao, Wanlin ;
Liang, Shuyu ;
Wang, Rujie ;
Jiang, Qian ;
Zhang, Yu ;
Zheng, Qianwen ;
Xie, Bingqiao ;
Toe, Cui Ying ;
Zhu, Xuancan ;
Wang, Junya ;
Huang, Liang ;
Gao, Yanshan ;
Wang, Zheng ;
Jo, Changbum ;
Wang, Qiang ;
Wang, Lidong ;
Liu, Yuefeng ;
Louis, Benoit ;
Scott, Jason ;
Roger, Anne-Cecile ;
Amal, Rose ;
Heh, Hong ;
Park, Sang-Eon .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8584-8686
[9]   Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations [J].
Greeley, J. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (19) :5829-5836
[10]   Alloy catalysts designed from first principles [J].
Greeley, J ;
Mavrikakis, M .
NATURE MATERIALS, 2004, 3 (11) :810-815