The effect of variable viscosity on the peristaltic flow of a Newtonian fluid in an asymmetric channel has been discussed. Asymmetry in the flow is induced due to travelling waves of different phase and amplitude which propagate along the channel walls. A long wavelength approximation is used in the flow analysis. Closed form analytic solutions for velocity components and longitudinal pressure gradient are obtained. The study also shows that, in addition to the effect of mean flow parameter, the wave amplitude also effect the peristaltic flow. This effect is noticeable in the pressure rise and frictional forces per wavelength through numerical integration. (c) 2007 Elsevier Inc. All rights reserved.