Control and Obstacle Avoidance of Wheeled Mobile Robot

被引:2
|
作者
Manzoor, Muhammad Farhan [1 ]
Wu, Qinghe [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing, Peoples R China
来源
PROCEEDINGS 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, COMMUNICATION SYSTEMS AND NETWORKS CICSYN 2015 | 2015年
关键词
model predictive control; feedback linearization; kinemtics; obstacle avoidance; potential field; MODEL-PREDICTIVE CONTROL;
D O I
10.1109/CICSyN.2015.48
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The idea belong to presented work is to use a MPC (Model Predictive Control) controller combined with the feedback linearization in order to manage the control problem of a single robot with unicycle Kinematics and obstacle avoidance function. To guarantee the obstacle avoidance of wheeled mobile robot we use the widely popular concept of artificial potential field that perfectly integrates with MPC. This approach can be naturally used for defining a proper cost function in the MPC framework. The proposed algorithm is based on the concept of robust MPC control that guarantees the single robot to avoid collision in the presence of only fixed obstacles. The proposed control algorithm has been validated using a simulation environment. Some of the most relevant results are presented in the simulation section. In the end some possible future research directions are underlined.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [1] Fuzzy Obstacle Avoidance Control of A Two-Wheeled Mobile Robot
    Chiu, Chian-Song
    Chiang, Teng-Shung
    Ye, Yu-Ting
    2015 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2015, : 1 - 6
  • [2] An obstacle avoidance method for two wheeled mobile robot
    Deng, Mingcong
    Inoue, Akira
    Shibata, Yoshiteru
    Sekiguchi, K.
    Ueki, Nobuyuki
    2007 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING, AND CONTROL, VOLS 1 AND 2, 2007, : 689 - 692
  • [3] Nonlinear Control for Tracking and Obstacle Avoidance of a Wheeled Mobile Robot With Nonholonomic Constraint
    Yang, Hongjiu
    Fan, Xiaozhao
    Shi, Peng
    Hua, Changchun
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (02) : 741 - 746
  • [4] Obstacle avoidance control of a mobile robot
    Rausis, K
    Myszkorowski, P
    Longchamp, R
    INTELLIGENT COMPONENTS AND INSTRUMENTS FOR CONTROL APPLICATIONS 1997 (SICICA'97), 1997, : 235 - 240
  • [5] Study of Obstacle Avoidance Based on Fuzzy Planner for Wheeled Mobile Robot
    Duan, Suolin
    Li, Yunfeng
    Chen, Shuyue
    Chen, Lanping
    Zou, Ling
    Ma, Zhenghua
    Ding, Ji
    2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011), 2011, : 672 - 676
  • [6] Equiangular Navigation Guidance of a Wheeled Mobile Robot with Local Obstacle Avoidance
    Teimoori, Hamid
    Savkin, Andrey V.
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 1962 - 1967
  • [7] FORMATION CONTROL AND OBSTACLE AVOIDANCE OF COOPERATIVE WHEELED MOBILE ROBOTS
    Abbaspour, Adel
    Moosavian, S. Ali A.
    Alipour, Khalil
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2015, 30 (05) : 418 - 428
  • [8] Mobile Robot Obstacle Avoidance Techniques
    Reyaz, Aamir
    Baasandorj, Bayanjargal
    Park, Sung Ho
    Lee, Deok Jin
    Chong, Kil To
    ADVANCED SCIENCE LETTERS, 2014, 20 (10-12) : 1927 - 1931
  • [9] Obstacle avoidance of two-wheeled mobile robot based on DWA algorithm
    Zhang, Yi
    Xiao, ZhiCheng
    Yuan, XueXi
    Li, ShuXiu
    Liang, ShenTao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5701 - 5706
  • [10] A Specified Time Obstacle Avoidance Control Strategy for Wheeled Mobile Robots
    Zhai, Jinpeng
    Geng, Zhiyong
    Yang, Jianying
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4692 - 4696