Phase Retrieval with Application to Optical Imaging

被引:878
作者
Shechtman, Yoav [1 ]
Eldar, Yonina C. [2 ]
Cohen, Oren [3 ]
Chapman, Henry N. [4 ]
Miao, Jianwei [5 ]
Segev, Mordechai [6 ,7 ,8 ,9 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[4] Univ Hamburg, Deutsch Elektronen Synchrotron, Ctr Free Electron Laser Sci, Hamburg, Germany
[5] Univ Calif Los Angeles, Los Angeles, CA USA
[6] CALTECH, Pasadena, CA 91125 USA
[7] Princeton Univ, Princeton, NJ 08544 USA
[8] OSA, New York, NY USA
[9] APS, New York, NY USA
关键词
X-RAY MICROSCOPY; SIGNAL RECONSTRUCTION; DIFFRACTION; RESOLUTION; TRANSPORT; ALGORITHM; MAGNITUDE; RESTORATION; PROJECTIONS; TOMOGRAPHY;
D O I
10.1109/MSP.2014.2352673
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of phase retrieval, i.e., the recovery of a function given the magnitude of its Fourier transform, arises in various fields of science and engineering, including electron microscopy, crystallography, astronomy, and optical imaging. Exploring phase retrieval in optical settings, specifically when the light originates from a laser, is natural since optical detection devices [e.g., charge-coupled device (CCD) cameras, photosensitive films, and the human eye] cannot measure the phase of a light wave. This is because, generally, optical measurement devices that rely on converting photons to electrons (current) do not allow for direct recording of the phase: the electromagnetic field oscillates at rates of ∼1015Hz, which no electronic measurement device can follow. Indeed, optical measurement/detection systems measure the photon flux, which is proportional to the magnitude squared of the field, not the phase. Consequently, measuring the phase of optical waves (electromagnetic fields oscillating at 1015Hz and higher) involves additional complexity, typically by requiring interference with another known field, in the process of holography. © 1991-2012 IEEE.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 144 条
[1]   Keyhole coherent diffractive imaging [J].
Abbey, Brian ;
Nugent, Keith A. ;
Williams, Garth J. ;
Clark, Jesse N. ;
Peele, Andrew G. ;
Pfeifer, Mark A. ;
De Jonge, Martin ;
McNulty, Ian .
NATURE PHYSICS, 2008, 4 (05) :394-398
[2]  
Abbey B, 2011, NAT PHOTONICS, V5, P420, DOI [10.1038/NPHOTON.2011.125, 10.1038/nphoton.2011.125]
[3]  
[Anonymous], ARXIV12034580
[4]  
[Anonymous], 1956, Trans. Amer. Math. Soc, DOI DOI 10.1090/S0002-9947-1956-0084194-4
[5]  
[Anonymous], 1999, Nonlinear Programming
[6]  
[Anonymous], 2013, Proc. Adv. Neural Inf. Process. Syst., DOI [10.1109/TSP.2015.2448516, DOI 10.1109/TSP.2015.2448516]
[7]  
[Anonymous], ARXIV13103240
[8]  
Bahmani S, 2011, CONF REC ASILOMAR C, P1148, DOI 10.1109/ACSSC.2011.6190194
[9]   On signal reconstruction without phase [J].
Balan, Radu ;
Casazza, Pete ;
Edidin, Dan .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) :345-356
[10]   Saving phase: Injectivity and stability for phase retrieval [J].
Bandeira, Afonso S. ;
Cahill, Jameson ;
Mixon, Dustin G. ;
Nelson, Aaron A. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) :106-125